索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]王贺,袁扬,宁小平,等.蛋白质精氨酸甲基转移酶5 在心血管疾病中的研究进展[J].国际心血管病杂志,2022,06:347-350.
点击复制

蛋白质精氨酸甲基转移酶5 在心血管疾病中的研究进展(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2022年06期
页码:
347-350
栏目:
综述
出版日期:
2022-12-20

文章信息/Info

Title:
-
作者:
王贺袁扬宁小平张冠鑫徐志云
200433 上海,海军军医大学长海医院心血管外科
Author(s):
-
关键词:
蛋白质精氨酸甲基转移酶蛋白质甲基化心血管疾病
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2022.06.008
文献标识码:
-
摘要:
蛋白质精氨酸甲基转移酶5(PRMT5)是Ⅱ型精氨酸甲基转移酶,其通过多种 途径参与机体的病理生理过程,涉及心血管、消化、免疫、血液等多个系统。PRMT5 可以 改变细胞形态,调节细胞的生长过程。在心血管疾病方面,PRMT5 可以抑制心肌肥厚,促进 炎性因子聚集及粥样斑块形成,参与内皮细胞的血管生成及心肌Na+通道表达。PRMT5 特 异性抑制剂的出现,使PRMT5 可作为潜在治疗靶点,用于治疗心血管疾病。
Abstract:
-

参考文献/References

[1] Blanc RS, Richard S. Arginine methylation: the coming of Age[J]. Mol Cell, 2017, 65(1):8-24.
[2] Wang YB, Li QL, Liu CY, et al. Protein arginine methyltransferase 5 (Prmt5) is required for germ cell survival during mouse embryonic development [J]. Biol Reprod, 2015, 92(4):104.
[3] Prabhu L, Wei H, Chen L, et al. Adapting AlphaLISA high throughput screen to discover a novel small-molecule inhibitor targeting protein arginine methyltransferase 5 in pancreatic and colorectal cancers[J]. Oncotarget, 2017, 8(25):39963- 39977.
[4] Pollack BP, Kotenko SV, He W, et al. The human homologue of the yeast proteins Skb1 and Hsl7p interacts with Jak kinases and contains protein methyltransferase activity[J]. J Biol Chem, 1999, 274(44):31531-31542.
[5] Zhu F, Rui LX. PRMT5 in gene regulation and hematologic malignancies[J]. Genes Dis, 2019, 6(3):247-257.
[6] 郭萍, 任晨霞, 麻丽霞, 等. 人PRMT5基因的生物信息学分 析[J]. 基因组学与应用生物学, 2019, 38(5):2259-2264.
[7] Ho MC, Wilczek C, Bonanno JB, et al. Structure of the arginine methyltransferase PRMT5-MEP50 reveals a mechanism for substrate specificity[J]. PLoS One, 2013, 8(2): e57008.
[8] Antonysamy S, Bonday Z, Campbell RM, et al. Crystal structure of the human PRMT5:MEP50 complex[J]. Proc Natl Acad Sci U S A, 2012, 109(44):17960-17965.
[9] Antonysamy S. The structure and function of the PRMT5:MEP50 complex[J]. Subcell Biochem, 2017, 83:185- 194.
[10] Sun LT, Wang MZ, Lv ZY, et al. Structural insights into protein arginine symmetric dimethylation by PRMT5[J]. Proc Natl Acad Sci U S A, 2011, 108(51):20538-20543.
[11] Karkhanis V, Hu YJ, Baiocchi RA, et al. Versatility of PRMT5- induced methylation in growth control and development[J]. Trends Biochem Sci, 2011, 36(12):633-641.
[12] Xiao WD, Chen XQ, Liu LS, et al. Role of protein arginine methyltransferase 5 in human cancers[J]. Biomed Pharmacother, 2019, 114:108790.
[13] Andreu-Pérez P, Esteve-Puig R, de Torre-Minguela C, et al. Protein arginine methyltransferase 5 regulates ERK1/2 signal transduction amplitude and cell fate through CRAF[J]. Sci Signal, 2011, 4(190):ra58.
[14] Huang JH, Zheng YH, Zheng X, et al. PRMT5 promotes EMT through regulating Akt activity in human lung cancer[J]. Cell Transplant, 2021, 30:9636897211001772.
[15] Li Y, Chitnis N, Nakagawa H, et al. PRMT5 is required for lymphomagenesis triggered by multiple oncogenic drivers[J]. Cancer Discov, 2015, 5(3):288-303.
[16] Pastore F, Bhagwat N, Pastore A, et al. PRMT5 inhibition modulates E2F1 methylation and gene-regulatory networks leading to therapeutic efficacy in JAK2V617F-mutant MPN[J]. Cancer Discov, 2020, 10(11):1742-1757.
[17] Kim H, Ronai ZA. PRMT5 function and targeting in cancer[J]. Cell Stress, 2020, 4(8):199-215.
[18] Stopa N, Krebs JE, Shechter D. The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond[J]. Cell Mol Life Sci, 2015, 72(11):2041-2059.
[19] Huddleston JE. Development: a new move for PRMT5[J]. Nat Rev Mol Cell Biol, 2011, 12(2):76.
[20] Hsu JM, Chen CT, Chou CK, et al. Crosstalk between Arg 1175 methylation and Tyr 1173 phosphorylation negatively modulates EGFR-mediated ERK activation[J]. Nat Cell Biol, 2011, 13(2):174-181.
[21] Riggs DW, Yeager RA, Bhatnagar A. Defining the human envirome: an omics approach for assessing the environmental risk of cardiovascular disease[J]. Circ Res, 2018, 122(9): 1259-1275.
[22] Maillet M, van Berlo JH, Molkentin JD. Molecular basis of physiological heart growth: fundamental concepts and new players[J]. Nat Rev Mol Cell Biol, 2013, 14(1):38-48.
[23] Zhou GL, Li C, Feng J, et al. lncRNA UCA1 is a novel regulator in cardiomyocyte hypertrophy through targeting the miR-184/HOXA9 axis[J]. Cardiorenal Med, 2018, 8(2):130- 139.
[24] Cai SD, Liu R, Wang PX, et al. PRMT5 prevents cardiomyocyte hypertrophy via symmetric dimethylating HoxA9 and repressing HoxA9 expression[J]. Front Pharmacol, 2020, 11:600627.
[25] Ang YS, Rivas RN, Ribeiro AJS, et al. Disease model of GATA4 mutation reveals transcription factor cooperativity in human cardiogenesis[J]. Cell, 2016, 167(7):1734-1749.
[26] Chen M, Yi B, Sun JX. Inhibition of cardiomyocyte hypertrophy by protein arginine methyltransferase 5[J]. J Biol Chem, 2014, 289(35):24325-24335.
[27] Wong MCS, Zhang DX, Wang HHX. Rapid emergence of atherosclerosis in Asia: a systematic review of coronary atherosclerotic heart disease epidemiology and implications for prevention and control strategies[J]. Curr Opin Lipidol, 2015, 26(4):257-269.
[28] Tan BC, Liu Q, Yang LP, et al. Low expression of PRMT5 in peripheral blood may serve as a potential independent risk factor in assessments of the risk of stable CAD and AMI[J]. BMC Cardiovasc Disord, 2019, 19(1):31.
[29] Harris DP, Bandyopadhyay S, Maxwell TJ, et al. Tumor necrosis factor (TNF)-α induction of CXCL10 in endothelial cells requires protein arginine methyltransferase 5 (PRMT5)- mediated nuclear factor (NF)-κB p65 methylation[J]. J Biol Chem, 2014, 289(22):15328-15339.
[30] Harris DP, Chandrasekharan UM, Bandyopadhyay S, et al. PRMT5-mediated methylation of NF-κB p65 at Arg174 is required for endothelial CXCL11 gene induction in response to TNF-α and IFN-γ costimulation[J]. PLoS One, 2016, 11(2): e0148905.
[31] Betz C, Lenard A, Belting HG, et al. Cell behaviors and dynamics during angiogenesis[J]. Development, 2016, 143(13):2249-2260.
[32] Sauteur L, Affolter M, Belting HG. Distinct and redundant functions of Esama and VE-cadherin during vascular morphogenesis[J]. Development, 2017, 144(8):1554-1565.
[33] Quillien A, Gilbert G, Boulet M, et al. Prmt5 promotes vascular morphogenesis independently of its methyltransferase activity[J]. PLoS Genet, 2021, 17(6):e1009641.
[34] Rosa-Garrido M, Chapski DJ, Vondriska TM. Epigenomes in cardiovascular disease[J]. Circ Res, 2018, 122(11):1586-1607.
[35] Zhang X, Huang WJ, Chen WW. TGF-β1 factor in the cerebrovascular diseases of Alzheimer's disease[J]. Eur Rev Med Pharmacol Sci, 2016, 20(24):5178-5185.
[36] Rook MB, Evers MM, Vos MA, et al. Biology of cardiac sodium channel Nav1.5 expression[J]. Cardiovasc Res, 2012, 93(1):12-23.
[37] Beltran-Alvarez P, Pagans S, Brugada R. The cardiac sodium channel is post-translationally modified by arginine methylation[J]. J Proteome Res, 2011, 10(8):3712-3719.
[38] Beltran-Alvarez P, Espejo A, Schmauder R, et al. Protein arginine methyl transferases-3 and -5 increase cell surface expression of cardiac sodium channel[J]. FEBS Lett, 2013, 587(19):3159-3165.
[39] Luo MK. Current chemical biology approaches to interrogate protein methyltransferases[J]. ACS Chem Biol, 2012, 7(3): 443-463.
[40] 黄美玲, 肖晶晶, 延常姣, 等. 蛋白质精氨酸甲基转移酶5抑 制剂的研究进展[J]. 现代肿瘤医学, 2019, 27(8):1432-1435.
[41] Richters A. Targeting protein arginine methyltransferase 5 in disease[J]. Future Med Chem, 2017, 9(17):2081-2098.
[42] Smil D, Eram MS, Li FL, et al. Discovery of a dual PRMT5- PRMT7 inhibitor[J]. ACS Med Chem Lett, 2015, 6(4):408- 412.
[43] Marjon K, Cameron MJ, Quang P, et al. MTAP deletions in cancer create vulnerability to targeting of the MAT2A/ PRMT5/RIOK1 axis[J]. Cell Rep, 2016, 15(3):574-587.
[44] Kryukov GV, Wilson FH, Ruth JR, et al. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells[J]. Science, 2016, 351(6278): 1214-1218.
[45] Alinari LP, Mahasenan KV, Yan FT, et al. Selective inhibition of protein arginine methyltransferase 5 blocks initiation and maintenance of B-cell transformation[J]. Blood, 2015, 125(16):2530-2543.
[46] Webb LM, Amici SA, Jablonski KA, et al. PRMT5-selective inhibitors suppress inflammatory T cell responses and experimental autoimmune encephalomyelitis[J]. J Immunol, 2017, 198(4):1439-1451.
[47] Schnormeier AK, Pommerenke C, Kaufmann M, et al. Genomic deregulation of PRMT5 supports growth and stress tolerance in chronic lymphocytic leukemia[J]. Sci Rep, 2020, 10(1):9775.
[48] Duncan KW, Rioux N, Boriack-Sjodin PA, et al. Structure and property guided design in the identification of PRMT5 tool compound EPZ015666[J]. ACS Med Chem Lett, 2016, 7(2): 162-166.
[49] Rioux N, Duncan KW, Lantz RJ, et al. Species differences in metabolism of EPZ015666, an oxetane-containing protein arginine methyltransferase-5 (PRMT5) inhibitor[J]. Xenobiotica, 2016, 46(3):268-277.
[50] Fu XD. Exploiting the hidden treasure of detained introns[J]. Cancer Cell, 2017, 32(4):393-395.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(81770269)
通信作者:徐志云,E-mail:xuzhiyun_ch@163.com
更新日期/Last Update: 2022-12-20