索引超出了数组界限。
[1] Blanc RS, Richard S. Arginine methylation: the coming of
Age[J]. Mol Cell, 2017, 65(1):8-24.
[2] Wang YB, Li QL, Liu CY, et al. Protein arginine
methyltransferase 5 (Prmt5) is required for germ cell survival
during mouse embryonic development [J]. Biol Reprod, 2015,
92(4):104.
[3] Prabhu L, Wei H, Chen L, et al. Adapting AlphaLISA high
throughput screen to discover a novel small-molecule inhibitor
targeting protein arginine methyltransferase 5 in pancreatic
and colorectal cancers[J]. Oncotarget, 2017, 8(25):39963-
39977.
[4] Pollack BP, Kotenko SV, He W, et al. The human homologue
of the yeast proteins Skb1 and Hsl7p interacts with Jak kinases
and contains protein methyltransferase activity[J]. J Biol
Chem, 1999, 274(44):31531-31542.
[5] Zhu F, Rui LX. PRMT5 in gene regulation and hematologic
malignancies[J]. Genes Dis, 2019, 6(3):247-257.
[6] 郭萍, 任晨霞, 麻丽霞, 等. 人PRMT5基因的生物信息学分
析[J]. 基因组学与应用生物学, 2019, 38(5):2259-2264.
[7] Ho MC, Wilczek C, Bonanno JB, et al. Structure of the
arginine methyltransferase PRMT5-MEP50 reveals a
mechanism for substrate specificity[J]. PLoS One, 2013, 8(2):
e57008.
[8] Antonysamy S, Bonday Z, Campbell RM, et al. Crystal
structure of the human PRMT5:MEP50 complex[J]. Proc Natl
Acad Sci U S A, 2012, 109(44):17960-17965.
[9] Antonysamy S. The structure and function of the
PRMT5:MEP50 complex[J]. Subcell Biochem, 2017, 83:185-
194.
[10] Sun LT, Wang MZ, Lv ZY, et al. Structural insights into
protein arginine symmetric dimethylation by PRMT5[J]. Proc
Natl Acad Sci U S A, 2011, 108(51):20538-20543.
[11] Karkhanis V, Hu YJ, Baiocchi RA, et al. Versatility of PRMT5-
induced methylation in growth control and development[J].
Trends Biochem Sci, 2011, 36(12):633-641.
[12] Xiao WD, Chen XQ, Liu LS, et al. Role of protein
arginine methyltransferase 5 in human cancers[J]. Biomed
Pharmacother, 2019, 114:108790.
[13] Andreu-Pérez P, Esteve-Puig R, de Torre-Minguela C, et al.
Protein arginine methyltransferase 5 regulates ERK1/2 signal
transduction amplitude and cell fate through CRAF[J]. Sci
Signal, 2011, 4(190):ra58.
[14] Huang JH, Zheng YH, Zheng X, et al. PRMT5 promotes EMT
through regulating Akt activity in human lung cancer[J]. Cell
Transplant, 2021, 30:9636897211001772.
[15] Li Y, Chitnis N, Nakagawa H, et al. PRMT5 is required for
lymphomagenesis triggered by multiple oncogenic drivers[J].
Cancer Discov, 2015, 5(3):288-303.
[16] Pastore F, Bhagwat N, Pastore A, et al. PRMT5 inhibition
modulates E2F1 methylation and gene-regulatory networks
leading to therapeutic efficacy in JAK2V617F-mutant MPN[J].
Cancer Discov, 2020, 10(11):1742-1757.
[17] Kim H, Ronai ZA. PRMT5 function and targeting in cancer[J].
Cell Stress, 2020, 4(8):199-215.
[18] Stopa N, Krebs JE, Shechter D. The PRMT5 arginine
methyltransferase: many roles in development, cancer and
beyond[J]. Cell Mol Life Sci, 2015, 72(11):2041-2059.
[19] Huddleston JE. Development: a new move for PRMT5[J]. Nat
Rev Mol Cell Biol, 2011, 12(2):76.
[20] Hsu JM, Chen CT, Chou CK, et al. Crosstalk between Arg
1175 methylation and Tyr 1173 phosphorylation negatively
modulates EGFR-mediated ERK activation[J]. Nat Cell Biol,
2011, 13(2):174-181.
[21] Riggs DW, Yeager RA, Bhatnagar A. Defining the human
envirome: an omics approach for assessing the environmental
risk of cardiovascular disease[J]. Circ Res, 2018, 122(9):
1259-1275.
[22] Maillet M, van Berlo JH, Molkentin JD. Molecular basis of
physiological heart growth: fundamental concepts and new
players[J]. Nat Rev Mol Cell Biol, 2013, 14(1):38-48.
[23] Zhou GL, Li C, Feng J, et al. lncRNA UCA1 is a novel
regulator in cardiomyocyte hypertrophy through targeting the
miR-184/HOXA9 axis[J]. Cardiorenal Med, 2018, 8(2):130-
139.
[24] Cai SD, Liu R, Wang PX, et al. PRMT5 prevents
cardiomyocyte hypertrophy via symmetric dimethylating
HoxA9 and repressing HoxA9 expression[J]. Front Pharmacol,
2020, 11:600627.
[25] Ang YS, Rivas RN, Ribeiro AJS, et al. Disease model of
GATA4 mutation reveals transcription factor cooperativity in
human cardiogenesis[J]. Cell, 2016, 167(7):1734-1749.
[26] Chen M, Yi B, Sun JX. Inhibition of cardiomyocyte
hypertrophy by protein arginine methyltransferase 5[J]. J Biol
Chem, 2014, 289(35):24325-24335.
[27] Wong MCS, Zhang DX, Wang HHX. Rapid emergence of
atherosclerosis in Asia: a systematic review of coronary atherosclerotic heart disease epidemiology and implications
for prevention and control strategies[J]. Curr Opin Lipidol,
2015, 26(4):257-269.
[28] Tan BC, Liu Q, Yang LP, et al. Low expression of PRMT5
in peripheral blood may serve as a potential independent risk
factor in assessments of the risk of stable CAD and AMI[J].
BMC Cardiovasc Disord, 2019, 19(1):31.
[29] Harris DP, Bandyopadhyay S, Maxwell TJ, et al. Tumor
necrosis factor (TNF)-α induction of CXCL10 in endothelial
cells requires protein arginine methyltransferase 5 (PRMT5)-
mediated nuclear factor (NF)-κB p65 methylation[J]. J Biol
Chem, 2014, 289(22):15328-15339.
[30] Harris DP, Chandrasekharan UM, Bandyopadhyay S, et al.
PRMT5-mediated methylation of NF-κB p65 at Arg174 is
required for endothelial CXCL11 gene induction in response
to TNF-α and IFN-γ costimulation[J]. PLoS One, 2016, 11(2):
e0148905.
[31] Betz C, Lenard A, Belting HG, et al. Cell behaviors and
dynamics during angiogenesis[J]. Development, 2016,
143(13):2249-2260.
[32] Sauteur L, Affolter M, Belting HG. Distinct and redundant
functions of Esama and VE-cadherin during vascular
morphogenesis[J]. Development, 2017, 144(8):1554-1565.
[33] Quillien A, Gilbert G, Boulet M, et al. Prmt5 promotes
vascular morphogenesis independently of its methyltransferase
activity[J]. PLoS Genet, 2021, 17(6):e1009641.
[34] Rosa-Garrido M, Chapski DJ, Vondriska TM. Epigenomes in
cardiovascular disease[J]. Circ Res, 2018, 122(11):1586-1607.
[35] Zhang X, Huang WJ, Chen WW. TGF-β1 factor in the
cerebrovascular diseases of Alzheimer's disease[J]. Eur Rev
Med Pharmacol Sci, 2016, 20(24):5178-5185.
[36] Rook MB, Evers MM, Vos MA, et al. Biology of cardiac
sodium channel Nav1.5 expression[J]. Cardiovasc Res, 2012,
93(1):12-23.
[37] Beltran-Alvarez P, Pagans S, Brugada R. The cardiac
sodium channel is post-translationally modified by arginine
methylation[J]. J Proteome Res, 2011, 10(8):3712-3719.
[38] Beltran-Alvarez P, Espejo A, Schmauder R, et al. Protein
arginine methyl transferases-3 and -5 increase cell surface
expression of cardiac sodium channel[J]. FEBS Lett, 2013,
587(19):3159-3165.
[39] Luo MK. Current chemical biology approaches to interrogate
protein methyltransferases[J]. ACS Chem Biol, 2012, 7(3):
443-463.
[40] 黄美玲, 肖晶晶, 延常姣, 等. 蛋白质精氨酸甲基转移酶5抑
制剂的研究进展[J]. 现代肿瘤医学, 2019, 27(8):1432-1435.
[41] Richters A. Targeting protein arginine methyltransferase 5 in
disease[J]. Future Med Chem, 2017, 9(17):2081-2098.
[42] Smil D, Eram MS, Li FL, et al. Discovery of a dual PRMT5-
PRMT7 inhibitor[J]. ACS Med Chem Lett, 2015, 6(4):408-
412.
[43] Marjon K, Cameron MJ, Quang P, et al. MTAP deletions
in cancer create vulnerability to targeting of the MAT2A/
PRMT5/RIOK1 axis[J]. Cell Rep, 2016, 15(3):574-587.
[44] Kryukov GV, Wilson FH, Ruth JR, et al. MTAP deletion
confers enhanced dependency on the PRMT5 arginine
methyltransferase in cancer cells[J]. Science, 2016, 351(6278):
1214-1218.
[45] Alinari LP, Mahasenan KV, Yan FT, et al. Selective inhibition
of protein arginine methyltransferase 5 blocks initiation
and maintenance of B-cell transformation[J]. Blood, 2015,
125(16):2530-2543.
[46] Webb LM, Amici SA, Jablonski KA, et al. PRMT5-selective
inhibitors suppress inflammatory T cell responses and
experimental autoimmune encephalomyelitis[J]. J Immunol,
2017, 198(4):1439-1451.
[47] Schnormeier AK, Pommerenke C, Kaufmann M, et al.
Genomic deregulation of PRMT5 supports growth and stress
tolerance in chronic lymphocytic leukemia[J]. Sci Rep, 2020,
10(1):9775.
[48] Duncan KW, Rioux N, Boriack-Sjodin PA, et al. Structure and
property guided design in the identification of PRMT5 tool
compound EPZ015666[J]. ACS Med Chem Lett, 2016, 7(2):
162-166.
[49] Rioux N, Duncan KW, Lantz RJ, et al. Species differences
in metabolism of EPZ015666, an oxetane-containing
protein arginine methyltransferase-5 (PRMT5) inhibitor[J].
Xenobiotica, 2016, 46(3):268-277.
[50] Fu XD. Exploiting the hidden treasure of detained introns[J].
Cancer Cell, 2017, 32(4):393-395.