索引超出了数组界限。
[1] Panagiotou A, Trendelenburg M, Osthoff M. The Lectin
pathway of complement in myocardial ischemia/reperfusion
injury-review of its significance and the potential impact of
therapeutic interference by C1 esterase inhibitor[J]. Front
Immunol, 2018, 9:1151.
[2] Pennings GJ, Kritharides L. CD147 in cardiovascular disease
and thrombosis[J]. Semin Thromb Hemost, 2014, 40(7):747-
755.
[3] Seizer P, Gawaz M, May AE. Cyclophilin A and EMMPRIN
(CD147) in cardiovascular diseases[J]. Cardiovasc Res, 2014,
102(1):17-23.
[4] Akkus MN, Ormam A, Seyis S, et al. Plasma EMMPRIN
levels in acute myocardial infarction and stable coronary artery
disease[J]. Clin Invest Med, 2016, 39(3):79-87.
[5] Seizer P, Ochmann C, Sch?nberger T, et al. Disrupting the
EMMPRIN(CD147)-cyclophilin A interaction reduces infarct
size and preserves systolic function after myocardial ischemia
and reperfusion[J]. Arterioscler Thromb Vasc Biol, 2011,
31(6):1377-1386.
[6] Shi Y, Yan W, Lin Q, et al. Icariin influences cardiac
remodeling following myocardial infarction by regulating the
CD147/MMP-9 pathway[J]. J Int Med Res, 2018, 46(6):2371-
2385.
[7] Lv X, Lu P, Hu Y, et al. MiR-346 inhibited apoptosis against
myocardial ischemia-reperfusion injury via targeting bax in
rats[J]. Drug Des Devel Ther, 2020, 14:895-905.
[8] Frank A, Bonney M, Bonney S, et al. Myocardial ischemia
reperfusion injury:from basic science to clinical bedside[J].
Semin Cardiothorac Vasc Anesth, 2012, 16(3):123-132.
[9] Nishikata R, Kato N, Hiraiwa K. Oxidative stress may be
involved in distant organ failure in tourniquet shock model
mice[J]. Leg Med (Tokyo), 2014, 16(2):70-75.
[10] Fr?hlich GM, Meier P, White SK, et al. Myocardial
reperfusion injury: looking beyond primary PCI[J]. Eur Heart J,
2013, 34(23):1714-1722.
[11] Davidson B, Goldberg I, Berner A, et al. EMMPRIN
(extracellular matrix metalloproteinase inducer) is a novel
marker of poor outcome in serous ovarian carcinoma[J]. Clin
Exp Metastasis, 2003, 20(2):161-169.
[12] Lian C, Guo Y, Zhang J, et al. Targeting CD147 is a novel
strategy for antitumor therapy[J]. Curr Pharm Des, 2017,
23(29):4410-4421.
[13] Patrizz A, Doran SJ, Chauhan A, et al. EMMPRIN/CD147
plays a detrimental role in clinical and experimental ischemic
stroke[J]. Aging (Albany NY), 2020, 12(6):5121-5139.
[14] Liehn EA, Piccinini AM, Koenen RR, et al. A new monocyte
chemotactic protein-1/chemokine CC motif ligand-2
competitor limiting neointima formation and myocardial
ischemia/reperfusion injury in mice[J]. J Am Coll Cardiol,
2010, 56(22):1847-1857.
[15] Frangogiannis NG. The inflammatory response in myocardial
injury, repair, and remodelling[J]. Nat Rev Cardiol, 2014,
11(5): 255-265.
[16] Zhu X, Song Z, Zhang S, et al. CD147: a novel modulator
of inflammatory and immune disorders[J]. Curr Med Chem,
2014, 21(19):2138-2145.
[17] Tarin C, Lavin B, Gomez M, et al. The extracellular matrix
metalloproteinase inducer EMMPRIN is a target of nitric
oxide in myocardial ischemia/reperfusion[J]. Free Radic Biol
Med, 2011, 51(2):387-395.
[18] Cuadrado I, Castejon B, Martin AM, et al. Nitric oxide
induces cardiac protection by preventing extracellular matrix
degradation through the complex Caveolin-3/EMMPRIN in
cardiac myocytes[J]. PLoS One, 2016, 11(9):e0162912.
[19] Yuan W, Ge H, He B. Pro-inflammatory activities induced
by CyPA-EMMPRIN interaction in monocytes[J].
Atherosclerosis, 2010, 213(2):415-421.
[20] Yurchenko V, Constant S, Eisenmesser E, et al. Cyclophilin-
CD147 interactions: a new target for anti-inflammatory
therapeutics[J]. Clin Exp Immunol, 2010, 160(3):305-317.
[21] Jin R, Liu S, Wang M, et al. Inhibition of CD147 attenuates
stroke-associated pneumonia through modulating lung immune
response in mice[J]. Front Neurol, 2019, 10:853.
[22] Wang CH, Dai JY, Wang L, et al. Expression of CD147
(EMMPRIN) on neutrophils in rheumatoid arthritis enhances
chemotaxis, matrix metalloproteinase production and
invasiveness of synoviocytes[J]. J Cell Mol Med, 2011, 15(4):
850-860.
[23] Su H, Yang Y. The roles of CyPA and CD147 in cardiac
remodelling[J]. Exp Mol Pathol, 2018, 104(3):222-226.
[24] Rodríguez D, Morrison CJ, Overall CM. Matrix
metalloproteinases: what do they not do? New substrates
and biological roles identified by murine models and
proteomics[J]. Biochim Biophys Acta, 2010, 1803(1):39-54.
[25] Fernández-Velasco M, González-Ramos S, Boscá L.
Involvement of monocytes/macrophages as key factors in the
development and progression of cardiovascular diseases[J].
Biochem J, 2014, 458(2):187-193.
[26] Adair-Kirk TL, Senior RM. Fragments of extracellular matrix
as mediators of inflammation[J]. Int J Biochem Cell Biol,
2008, 40(6/7):1101-1110.
[27] Radosinska J, Barancik M, Vrbjar N. Heart failure and role of
circulating MMP-2 and MMP-9[J]. Panminerva Med, 2017,
59(3):241-253.
[28] Lima B, Forrester MT, Hess DT, et al. S-nitrosylation in
cardiovascular signaling[J]. Circ Res, 2010, 106(4): 633-646.
[29] Foster MW, McMahon TJ, Stamler JS. S-nitrosylation in
health and disease[J]. Trends Mol Med, 2003, 9(4):160-168.
[30] Atar S, Ye Y, Lin Y, et al. Atorvastatin-induced cardioprotection
is mediated by increasing inducible nitric oxide synthase and
consequent S-nitrosylation of cyclooxygenase-2[J]. Am J
Physiol Heart Circ Physiol, 2006, 290(5):H1960-H1968.
[31] Hallstr?m S, Franz M, Gasser H, et al. S-nitroso human serum
albumin reduces ischaemia/reperfusion injury in the pig heart
after unprotected warm ischaemia[J]. Cardiovasc Res, 2008,
77(3):506-514.