索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]卜倩爽,吴健忠,董国,等.剪切应力调节内皮功能的研究进展[J].国际心血管病杂志,2022,04:206-209.
点击复制

剪切应力调节内皮功能的研究进展(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2022年04期
页码:
206-209
栏目:
综述
出版日期:
2022-08-30

文章信息/Info

Title:
-
作者:
卜倩爽吴健忠董国杨树森
150001 哈尔滨医科大学附属第一医院心内科
Author(s):
-
关键词:
剪切应力内皮功能动脉粥样硬化
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2022.04.005
文献标识码:
-
摘要:
血流动力学影响内皮的功能特性,剪切应力通过激活血管内皮细胞的感受器和 胞内信号转导调控基因表达,调节内皮细胞功能。低剪切应力与振荡性剪切应力通过各种转 导途径及细胞因子促进细胞增殖和炎性细胞黏附,引发内皮功能障碍,导致动脉粥样硬化。 该文介绍近年来剪切应力参与调节血管内皮间充质转化、细胞更新、炎性反应等机制的研 究进展。
Abstract:
-

参考文献/References

[1] GBD 2017 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017 [J]. Lancet, 2018, 392(10159):1859-1922.
[2] Vanderlaan PA, Reardon CA, Getz GS. Site specificity of atherosclerosis: site-selective responses to atherosclerotic modulators[J]. Arterioscler Thromb Vasc Biol, 2004, 24(1):12- 22.
[3] Krüger-Genge A, Blocki A, Franke RP, et al. Vascular endothelial cell biology: an update[J]. Int J Mol Sci, 2019, 20(18):4411.
[4] Soulis JV, Farmakis TM, Giannoglou GD, et al. Wall shear stress in normal left coronary artery tree[J]. J Biomech, 2006, 39(4):742-749.
[5] Heo KS, Berk BC, Abe J. Disturbed flow-induced endothelial proatherogenic signaling via regulating post-translational modifications and epigenetic events[J]. Antioxid Redox Signal, 2016, 25(7):435-450.
[6] Baratchi S, Khoshmanesh K, Woodman OL, et al. Molecular sensors of blood flow in endothelial cells[J]. Trends Mol Med, 2017, 23(9):850-868.
[7] K a t s u m i A , O r r AW, T z i m a E , e t a l . I n t e g r i n s i n mechanotransduction[J]. J Biol Chem, 2004, 279(13):12001- 12004.
[8] Tarbell JM, Simon SI, Curry FR. Mechanosensing at the vascular interface[J]. Annu Rev Biomed Eng, 2014, 16:505- 532.
[9] Mack JJ, Mosqueiro TS, Archer BJ, et al. NOTCH1 is a mechanosensor in adult arteries[J]. Nat Commun, 2017, 8(1):1620.
[10] Rangel L, Bernabé-Rubio M, Fernández-Barrera J, et al. Caveolin-1α regulates primary cilium length by controlling RhoA GTPase activity[J]. Sci Rep, 2019, 9(1):1116.
[11] Zhao Q, Zhou H, Chi S, et al. Structure and mechanogating mechanism of the Piezo1 Channel[J]. Nature, 2018, 554(7693):487-492.
[12] Rausch V, Bostrom JR, Park J, et al. The hippo pathway regulates caveolae expression and mediates flow response via caveolae[J]. Curr Biol, 2019, 29(2):242-255.
[13] Niu N, Xu S, Xu Y, et al. Targeting mechanosensitive transcription factors in atherosclerosis[J]. Trends Pharmacol Sci, 2019, 40(4):253-266.
[14] Senbanerjee S, Lin Z, Atkins GB, et al. KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation[J]. J Exp Med, 2004, 199(10):1305-1315.
[15] Augustin HG, Koh GY. Organotypic vasculature: from descriptive heterogeneity to functional pathophysiology[J]. Science, 2017, 357(6353):eaal2379.
[16] Eelen G, De Zeeuw P, Treps L, et al. Endothelial cell metabolism[J]. Physiol Rev, 2018, 98(1):3-58.
[17] Totaro A, Panciera T, Piccolo S. YAP/TAZ upstream signals and downstream responses[J]. Nat Cell Biol, 2018, 20(8):888- 899.
[18] Li B, He J, Lv H, et al. c-Abl regulates YAPY357 phosphorylation to activate endothelial atherogenic responses to disturbed flow[J]. J Clin Invest, 2019, 129(3):1167-1179.
[19] Wang KC, Yeh YT, Nguyen P, et al. Flow-dependent YAP/TAZ activities regulate endothelial phenotypes and atherosclerosis[J]. Proc Natl Acad Sci U S A, 2016, 113(41):11525-11530.
[20] Mehta V, Pang KL, Rozbesky D, et al. The guidance receptor plexin D1 is a mechanosensor in endothelial cells[J]. Nature, 2020, 578(7794):290-295.
[21] Kovacic JC, Mercader N, Torres M, et al. Epithelial-tomesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease[J]. Circulation, 2012, 125(14):1795-1808.
[22] Lai B, Li Z, He M, et al. Atheroprone flow enhances the endothelial-to-mesenchymal transition[J]. Am J Physiol Heart Circ Physiol, 2018, 315(5):H1293-H1303.
[23] Feng S, Bowden N, Fragiadaki M, et al. Mechanical activation of Hypoxia-Inducible factor 1α drives endothelial dysfunction at atheroprone sites[J]. Arterioscler Thromb Vasc Biol, 2017, 37(11):2087-2101.
[24] Wu D, Huang RT, Hamanaka RB, et al. HIF-1α is required for disturbed flow-induced metabolic reprogramming in human and porcine vascular endothelium[J]. Elife, 2017, 6:e25217.
[25] Lee DY, Chiu JJ. Atherosclerosis and flow: roles of epigenetic modulation in vascular endothelium[J]. J Biomed Sci, 2019, 26(1):56.
[26] Torisu K, Singh KK, Torisu T, et al. Intact endothelial a u t o p h a g y i s r e q u i r e d t o m a i n t a i n v a s c u l a r l i p i d homeostasis[J]. Aging Cell, 2016, 15(1):187-191.
[27] Vion AC, Kheloufi M, Hammoutene A, et al. Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow[J]. Proc Natl Acad Sci U S A, 2017, 114(41):E8675-E8684.
[28] Liu CC, Huang ZX, Li X, et al. Upregulation of NLRP3 via STAT3-dependent histone acetylation contributes to painful neuropathy induced by bortezomib[J]. Exp Neurol, 2018, 302:104-111.
[29] Xu X, Yang Y, Wang G, et al. Low shear stress regulates vascular endothelial cell pyroptosis through miR-181b-5p/ STAT-3 axis[J]. J Cell Physiol, 2021, 236(1):318-327.
[30] Chao Y, Ye P, Zhu L, et al. Low shear stress induces endothelial reactive Oxygen species via the AT1R/eNOS/NO pathway[J]. J Cell Physiol, 2018, 233(2):1384-1395.
[31] Hsu PL, Lin YC, Ni H, et al. Ganoderma triterpenoids exert antiatherogenic effects in mice by alleviating disturbed Flow- Induced oxidative stress and inflammation[J]. Oxid Med Cell Longev, 2018, 2018:3491703.
[32] Singh B, Kosuru R, Lakshmikanthan S, et al. Endothelial rap1 (Ras-Association proximate 1) restricts inflammatory signaling to protect from the progression of atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2021, 41(2):638-650.
[33] Zhang J, Kong X, Wang Z, et al. AMP-activated protein kinase regulates glycocalyx impairment and macrophage recruitment in response to low shear stress[J]. FASEB J, 2019, 33(6):7202- 7212.
[34] Green JP, Souilhol C, Xanthis I, et al. Atheroprone flow activates inflammation via endothelial ATP-dependent P2X7-p38 signalling[J]. Cardiovasc Res, 2018, 114(2):324- 335.
[35] Qu D, Wang L, Huo M, et al. Focal TLR4 activation mediates disturbed flow-induced endothelial inflammation[J]. Cardiovasc Res, 2020, 116(1):226-236.

备注/Memo

备注/Memo:
通信作者:杨树森, Email: yangss@vip.163.com
更新日期/Last Update: 2022-08-30