索引超出了数组界限。
[1] GBD 2017 DALYs and HALE Collaborators. Global, regional,
and national disability-adjusted life-years (DALYs) for 359
diseases and injuries and healthy life expectancy (HALE) for
195 countries and territories, 1990-2017: a systematic analysis
for the Global Burden of Disease Study 2017 [J]. Lancet,
2018, 392(10159):1859-1922.
[2] Vanderlaan PA, Reardon CA, Getz GS. Site specificity of
atherosclerosis: site-selective responses to atherosclerotic
modulators[J]. Arterioscler Thromb Vasc Biol, 2004, 24(1):12-
22.
[3] Krüger-Genge A, Blocki A, Franke RP, et al. Vascular
endothelial cell biology: an update[J]. Int J Mol Sci, 2019,
20(18):4411.
[4] Soulis JV, Farmakis TM, Giannoglou GD, et al. Wall shear
stress in normal left coronary artery tree[J]. J Biomech, 2006,
39(4):742-749.
[5] Heo KS, Berk BC, Abe J. Disturbed flow-induced endothelial
proatherogenic signaling via regulating post-translational
modifications and epigenetic events[J]. Antioxid Redox Signal,
2016, 25(7):435-450.
[6] Baratchi S, Khoshmanesh K, Woodman OL, et al. Molecular
sensors of blood flow in endothelial cells[J]. Trends Mol Med,
2017, 23(9):850-868.
[7] K a t s u m i A , O r r AW, T z i m a E , e t a l . I n t e g r i n s i n
mechanotransduction[J]. J Biol Chem, 2004, 279(13):12001-
12004.
[8] Tarbell JM, Simon SI, Curry FR. Mechanosensing at the
vascular interface[J]. Annu Rev Biomed Eng, 2014, 16:505-
532.
[9] Mack JJ, Mosqueiro TS, Archer BJ, et al. NOTCH1 is a
mechanosensor in adult arteries[J]. Nat Commun, 2017,
8(1):1620.
[10] Rangel L, Bernabé-Rubio M, Fernández-Barrera J, et al.
Caveolin-1α regulates primary cilium length by controlling
RhoA GTPase activity[J]. Sci Rep, 2019, 9(1):1116.
[11] Zhao Q, Zhou H, Chi S, et al. Structure and mechanogating
mechanism of the Piezo1 Channel[J]. Nature, 2018,
554(7693):487-492.
[12] Rausch V, Bostrom JR, Park J, et al. The hippo pathway
regulates caveolae expression and mediates flow response via
caveolae[J]. Curr Biol, 2019, 29(2):242-255.
[13] Niu N, Xu S, Xu Y, et al. Targeting mechanosensitive
transcription factors in atherosclerosis[J]. Trends Pharmacol
Sci, 2019, 40(4):253-266.
[14] Senbanerjee S, Lin Z, Atkins GB, et al. KLF2 is a novel
transcriptional regulator of endothelial proinflammatory
activation[J]. J Exp Med, 2004, 199(10):1305-1315.
[15] Augustin HG, Koh GY. Organotypic vasculature: from
descriptive heterogeneity to functional pathophysiology[J].
Science, 2017, 357(6353):eaal2379.
[16] Eelen G, De Zeeuw P, Treps L, et al. Endothelial cell
metabolism[J]. Physiol Rev, 2018, 98(1):3-58.
[17] Totaro A, Panciera T, Piccolo S. YAP/TAZ upstream signals
and downstream responses[J]. Nat Cell Biol, 2018, 20(8):888-
899.
[18] Li B, He J, Lv H, et al. c-Abl regulates YAPY357
phosphorylation to activate endothelial atherogenic responses
to disturbed flow[J]. J Clin Invest, 2019, 129(3):1167-1179.
[19] Wang KC, Yeh YT, Nguyen P, et al. Flow-dependent
YAP/TAZ activities regulate endothelial phenotypes
and atherosclerosis[J]. Proc Natl Acad Sci U S A, 2016,
113(41):11525-11530.
[20] Mehta V, Pang KL, Rozbesky D, et al. The guidance receptor
plexin D1 is a mechanosensor in endothelial cells[J]. Nature,
2020, 578(7794):290-295.
[21] Kovacic JC, Mercader N, Torres M, et al. Epithelial-tomesenchymal
and endothelial-to-mesenchymal transition:
from cardiovascular development to disease[J]. Circulation,
2012, 125(14):1795-1808.
[22] Lai B, Li Z, He M, et al. Atheroprone flow enhances the
endothelial-to-mesenchymal transition[J]. Am J Physiol Heart
Circ Physiol, 2018, 315(5):H1293-H1303.
[23] Feng S, Bowden N, Fragiadaki M, et al. Mechanical activation
of Hypoxia-Inducible factor 1α drives endothelial dysfunction
at atheroprone sites[J]. Arterioscler Thromb Vasc Biol, 2017,
37(11):2087-2101.
[24] Wu D, Huang RT, Hamanaka RB, et al. HIF-1α is required
for disturbed flow-induced metabolic reprogramming in human
and porcine vascular endothelium[J]. Elife, 2017, 6:e25217.
[25] Lee DY, Chiu JJ. Atherosclerosis and flow: roles of epigenetic
modulation in vascular endothelium[J]. J Biomed Sci, 2019,
26(1):56.
[26] Torisu K, Singh KK, Torisu T, et al. Intact endothelial
a u t o p h a g y i s r e q u i r e d t o m a i n t a i n v a s c u l a r l i p i d
homeostasis[J]. Aging Cell, 2016, 15(1):187-191.
[27] Vion AC, Kheloufi M, Hammoutene A, et al. Autophagy is
required for endothelial cell alignment and atheroprotection
under physiological blood flow[J]. Proc Natl Acad Sci U S A,
2017, 114(41):E8675-E8684.
[28] Liu CC, Huang ZX, Li X, et al. Upregulation of NLRP3 via
STAT3-dependent histone acetylation contributes to painful
neuropathy induced by bortezomib[J]. Exp Neurol, 2018,
302:104-111.
[29] Xu X, Yang Y, Wang G, et al. Low shear stress regulates
vascular endothelial cell pyroptosis through miR-181b-5p/
STAT-3 axis[J]. J Cell Physiol, 2021, 236(1):318-327.
[30] Chao Y, Ye P, Zhu L, et al. Low shear stress induces
endothelial reactive Oxygen species via the AT1R/eNOS/NO
pathway[J]. J Cell Physiol, 2018, 233(2):1384-1395.
[31] Hsu PL, Lin YC, Ni H, et al. Ganoderma triterpenoids exert
antiatherogenic effects in mice by alleviating disturbed Flow-
Induced oxidative stress and inflammation[J]. Oxid Med Cell
Longev, 2018, 2018:3491703.
[32] Singh B, Kosuru R, Lakshmikanthan S, et al. Endothelial
rap1 (Ras-Association proximate 1) restricts inflammatory
signaling to protect from the progression of atherosclerosis[J].
Arterioscler Thromb Vasc Biol, 2021, 41(2):638-650.
[33] Zhang J, Kong X, Wang Z, et al. AMP-activated protein kinase
regulates glycocalyx impairment and macrophage recruitment
in response to low shear stress[J]. FASEB J, 2019, 33(6):7202-
7212.
[34] Green JP, Souilhol C, Xanthis I, et al. Atheroprone flow
activates inflammation via endothelial ATP-dependent
P2X7-p38 signalling[J]. Cardiovasc Res, 2018, 114(2):324-
335.
[35] Qu D, Wang L, Huo M, et al. Focal TLR4 activation
mediates disturbed flow-induced endothelial inflammation[J].
Cardiovasc Res, 2020, 116(1):226-236.