索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]王姣,彭石,刘丽芳,等.生物钟基因在缺血再灌注及心肌重构中的研究[J].国际心血管病杂志,2022,04:200-202.
点击复制

生物钟基因在缺血再灌注及心肌重构中的研究(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2022年04期
页码:
200-202
栏目:
综述
出版日期:
2022-08-30

文章信息/Info

Title:
-
作者:
王姣彭石刘丽芳吴波姚亚丽
730000 兰州大学第一临床医学院(王姣,彭石,刘丽芳, 吴波);730000 兰州大学第一医院心血管内科心脏中心(姚亚丽)
Author(s):
-
关键词:
生物钟基因缺血再灌注心肌重构生物钟自噬
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2022.04.003
文献标识码:
-
摘要:
急性心肌梗死后缺血再灌注损伤是冠状动脉粥样硬化性心脏病(冠心病)常见 的损伤加重原因。正常生物钟节律使机体适应外界环境变化,研究发现生物钟节律紊乱在心 肌缺血再灌注及心肌重构中发挥重要作用。生物钟基因紊乱可能通过增加炎性因子及活性 氧生成、阻碍线粒体自噬、加重铁死亡及生物钟自噬等多个方面加重缺血再灌注损伤,干扰 心肌重构,导致心血管事件预后恶化。研究生物钟基因在缺血再灌注及心肌重构过程中可能 的作用机制,有望为冠心病提供重要的治疗策略。
Abstract:
-

参考文献/References

[1] Khaper N, Bailey C, Ghugre NR, et al. Implications of disturbances in circadian rhythms for cardiovascular health: a new frontier in free radical biology[J]. Free Radic Biol Med, 2018, 119:85-92.
[2] Rabinovich-Nikitin I, Lieberman B, Martino T, et al. Circadian-regulated cell death in cardiovascular diseases[J]. Circulation, 2019, 139(7):965-980.
[3] Ruan W, Yuan X, Eltzschig HK. Circadian rhythm as a therapeutic target[J]. Nat Rev Drug Discov, 2021, 20(4):287- 307.
[4] Asgari-Targhi A, Klerman EB. Mathematical modeling of circadian rhythms[J]. Wiley Interdiscip Rev Syst Biol Med, 2019, 11(2):e1439.
[5] Thosar SS, Butler MP, Sa SA. Role of the circadian system in cardiovascular disease[J]. J Clin Invest, 2018, 128(6):2157- 2167.
[6] Lefta M, Campbell KS, Feng HZ, et al. Development of dilated cardiomyopathy in Bmal1-deficient mice[J]. Am J Physiol Heart Circ Physiol, 2012, 303(4):H475-H485.
[7] Fournier S, Taffé P, Radovanovic D, et al. Myocardial infarct size and mortality depend on the time of day—a large multicenter study[J]. PLoS One, 2015, 10(3):e0119157.
[8] Engwall M, Fridh I, Johansson L, et al. Lighting, sleep and circadian rhythm: an intervention study in the intensive care unit[J]. Intensive Crit Care Nurs, 2015, 31(6):325-335.
[9] Man A, Li H, Xia N. Circadian rhythm: potential therapeutic target for atherosclerosis and thrombosis[J]. Int J Mol Sci, 2021, 22(2):676.
[10] Hergenhan S, Holtkamp S, Scheiermann C. Molecular interactions between components of the circadian clock and the immune system[J]. J Mol Biol, 2020, 432(12):3700-3713.
[11] Huang H, Li Z, Ruan Y, et al. Circadian rhythm disorder: a potential inducer of vascular calcification?[J]. J Physiol Biochem, 2020, 76(4):513-524.
[12] Schloss MJ, Horckmans M, Nitz K, et al. The time-of-day of myocardial infarction onset affects healing through oscillations in cardiac neutrophil recruitment[J]. EMBO Mol Med, 2016, 8(8):937-948.
[13] Steffens S, Winter C, Schloss MJ, et al. Circadian control of inflammatory processes in atherosclerosis and its complications[J]. Arterioscler Thromb Vasc Biol, 2017, 37(6):1022-1028.
[14] Fioranelli M, Bottaccioli AG, Bottaccioli F, et al. Stress and inflammation in coronary artery disease: a review psychoneuroendocrineimmunology-based[J]. Front Immunol, 2018, 9:2031.
[15] Epelman S, Liu PP, Mann DL. Role of innate and adaptive immune mechanisms in cardiac injury and repair[J]. Nat Rev Immunol, 2015, 15(2):117-129.
[16] Bhatwadekar AD, Beli E, Diao Y, et al. Conditional deletion of Bmal1 accentuates microvascular and macrovascular injury[J]. Am J Pathol, 2017, 187(6):1426-1435.
[17] S a w i c k i G . I n t r a c e l l u l a r r e g u l a t i o n o f m a t r i x metalloproteinase-2 activity: new strategies in treatment and protection of heart subjected to oxidative stress[J]. Scientifica, 2013, 2013:130451.
[18] Li E, Li X, Huang J, et al. BMAL1 regulates mitochondrial fission and mitophagy through mitochondrial protein BNIP3 and is critical in the development of dilated cardiomyopathy[J]. Protein Cell, 2020, 11(9):661-679.
[19] Takaguri A, Sasano J, Akihiro O, et al. The role of circadian clock gene BMAL1 in vascular proliferation[J]. Eur J Pharmacol, 2020, 872:172924.
[20] Soares AC, Fonseca D. Cardiovascular diseases: a therapeutic perspective around the clock[J]. Drug Discov Today, 2020, 25(6):1086-1098.
[21] Mistry P, Duong A, Kirshenbaum L, et al. Cardiac clocks and preclinical translation[J]. Heart Fail Clin, 2017, 13(4):657- 672.
[22] Yang M, Chen P, Liu J, et al. Clockophagy is a novel selective autophagy process favoring ferroptosis[J]. Sci Adv, 2019, 5(7):eaaw2238.
[23] Chaanine AH, Gordon RE, Kohlbrenner E, et al. Potential role of BNIP3 in cardiac remodeling, myocardial stiffness, and endoplasmic reticulum: mitochondrial Calcium homeostasis in diastolic and systolic heart failure[J]. Circ Heart Fail, 2013, 6(3):572-583.
[24] Chen S, Fuller KK, Dunlap JC, et al. A pro- and antiinflammatory axis modulates the macrophage circadian clock[J]. Front Immunol, 2020, 11:867.
[25] Crnko S, Cour M, Van LL, et al. Vasculature on the clock: circadian rhythm and vascular dysfunction[J]. Vascul Pharmacol, 2018, 108:1-7.
[26] Tarquini R, Mazzoccoli G. Clock genes, metabolism, and cardiovascular risk[J]. Heart Fail Clin, 2017, 13(4):645-655.
[27] Wu Y, Tang D, Liu N, et al. Reciprocal regulation between the circadian clock and hypoxia signaling at the genome level in mammals[J]. Cell Metab, 2017, 25(1):73-85.

备注/Memo

备注/Memo:
基金项目:甘肃省卫生行业科研计划项目(GSWSKY-2015-44)
通信作者:姚亚丽, E-mail: yaoyali6373@163.com
更新日期/Last Update: 2022-08-30