索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]刘鹏,李凯园,王淑亚,等.心脏类器官研究进展[J].国际心血管病杂志,2022,04:193-196.
点击复制

心脏类器官研究进展(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2022年04期
页码:
193-196
栏目:
综述
出版日期:
2022-08-30

文章信息/Info

Title:
-
作者:
刘鹏李凯园王淑亚赵明明杜凤立苏国海
250013 济南,山东第一医科大学附属中心医院心血管 内科(刘鹏,李凯园,王淑亚,赵明明,苏国海);250000 济南,山 东省公共卫生临床中心(杜凤立)
Author(s):
-
关键词:
类器官基因编辑技术心脏毒性疾病模型
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2022.04.001
文献标识码:
-
摘要:
类器官是体外构建的由多种类型细胞组成的三维组织培养物,可在培养皿中模 拟人体器官发育和各种病理形态。结合基因编辑技术,构建出各种心脏疾病模型,有望以个 体化方式预测患者对药物的反应,为基因治疗和再生医学提供新视角。该文介绍心脏类器官 在构建心脏疾病模型和药物心脏毒性模型领域中的研究进展。
Abstract:
-

参考文献/References

[1] Hofbauer P, Jahnel SM, Papai N, et al. Cardioids reveal selforganizing principles of human cardiogenesis[J]. Cell, 2021, 184(12):3299-3317.
[2] Nugraha B, Buono MF, von Boehmer L, et al. Human cardiac organoids for disease modeling[J]. Clin Pharmacol Ther, 2019, 105(1):79-85.
[3] Yang L, Han Y, Nilsson-Payant BE, et al. A human pluripotent stem cell-based platform to study SARS-CoV-2 tropism and model virus infection in human cells and organoids[J]. Cell Stem Cell, 2020, 27(1):125-136.
[4] Mittal R, Woo FW, Castro CS, et al. Organ-on-chip models: implications in drug discovery and clinical applications[J]. J Cell Physiol, 2019, 234(6):8352-8380.
[5] Richards DJ, Li Y, Kerr CM, et al. Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity[J]. Nat Biomed Eng, 2020, 4(4):446-462.
[6] Fuster V, Kelly BB, Vedanthan R. Global cardiovascular health: urgent need for an intersectoral approach[J]. J Am Coll Cardiol, 2011, 58(12):1208-1210.
[7] Tzoulaki I, Elliott P, Kontis V, et al. Worldwide exposures to cardiovascular risk factors and associated health effects: current knowledge and data Gaps[J]. Circulation, 2016, 133(23):2314-2333.
[8] Jahnel SM, Mendjan S. Taking heart development to the next level[J]. Cell Stem Cell, 2021, 28(2): 180-181.
[9] Richards DJ, Coyle RC, Tan Y, et al. Inspiration from heart development: biomimetic development of functional human cardiac organoids[J]. Biomaterials, 2017, 142(2017):112-123.
[10] Mithal A, Capilla A, Heinze D, et al. Generation of mesenchyme free intestinal organoids from human induced pluripotent stem cells[J]. Nat Commun, 2020, 11(1):215.
[11] Mills RJ, Titmarsh DM, Koenig X, et al. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest[J]. Proc Natl Acad Sci U S A, 2017, 114(40):E8372-E8381.
[12] Lewis-Israeli YR, Volmert BD, Gabalski MA, et al. Generating self-assembling human heart organoids derived from pluripotent stem cells[J]. J Vis Exp, 2021(175):10.3791/63097.
[13] Nugraha B, Buono MF, Emmert MY. Modelling human cardiac diseases with 3D organoid[J]. Eur Heart J, 2018, 39(48):4234-4237.
[14] Zimmermann WH, Schneiderbanger K, Schubert P, et al. Tissue engineering of a differentiated cardiac muscle construct[J]. Circ Res, 2002, 90(2):223-230.
[15] Kupfer ME, Lin WH, Ravikumar V, et al. In situ expansion, differentiation, and electromechanical coupling of human cardiac muscle in a 3D bioprinted, chambered organoid[J]. Circ Res, 2020, 127(2):207-224.
[16] Zou Q, Grottkau BE, He Z, et al. Biofabrication of valentineshaped heart with a composite hydrogel and sacrificial material[J]. Mater Sci Eng C Mater Biol Appl, 2020, 108:110205.
[17] Seguret M, Vermersch E, Jouve C, et al. Cardiac organoids to model and heal heart failure and cardiomyopathies [J]. Biomedicines, 2021, 9(5):563.
[18] Lewis-Israeli YR, Wasserman AH, Gabalski MA, et al. Selfassembling human heart organoids for the modeling of cardiac development and congenital heart disease[J]. Nat Commun, 2021, 12(1):5142.
[19] Voges HK, Mills RJ, Elliott DA, et al. Development of a human cardiac organoid injury model reveals innate regenerative potential[J]. Development, 2017, 144(6):1118-1127.
[20] Sharma A, Sances S, Workman MJ, et al. Multi-lineage human iPSC-derived platforms for disease modeling and drug discovery[J]. Cell Stem Cell, 2020, 26(3):309-329.
[21] Tiburcy M, Hudson JE, Balfanz P, et al. Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair[J]. Circulation, 2017, 135(19):1832-1847.
[22] Libring S, Enríquez ?, Lee H, et al. In vitro magnetic techniques for investigating cancer progression[J]. Cancers, 2021, 13(17):4440.
[23] Lee J, Sutani A, Kaneko R, et al. In vitro generation of functional murine heart organoids via FGF4 and extracellular matrix[J]. Nat Commun, 2020, 11(1):4283.
[24] Wimmer RA, Leopoldi A, Aichinger M, et al. Human blood vessel organoids as a model of diabetic vasculopathy[J]. Nature, 2019, 565(7740):505-510.
[25] Lewis-Israeli YR, Wasserman AH, Aguirre A. Heart organoids and engineered heart tissues: novel tools for modeling human cardiac biology and disease[J]. Biomolecules, 2021, 11(9):1277.
[26] Lu HF, Leong MF, Lim TC, et al. Engineering a functional three-dimensional human cardiac tissue model for drug toxicity screening[J]. Biofabrication, 2017, 9(2):025011.
[27] Takeda M, Miyagawa S, Fukushima S, et al. Development of in vitro drug-induced cardiotoxicity assay by using threedimensional cardiac tissues derived from human induced pluripotent stem cells[J]. Tissue Eng Part C Methods, 2018, 24(1):56-67.

备注/Memo

备注/Memo:
基金项目:国家科技重大专项课题(2020ZX09201025)
通信作者:苏国海, E-mail: suguohai65@163.com
更新日期/Last Update: 2022-08-30