索引超出了数组界限。
[1] van der Pol A, van Gilst WH, Voors AA, et al. Treating
oxidative stress in heart failure: past, present and future[J]. Eur
J Heart Fail, 2019, 21(4):425-435.
[2] Garla VV, Butler J, Lien LF. SGLT-2 inhibitors in heart failure:
guide for prescribing and future perspectives[J]. Curr Cardiol
Rep, 2021, 23(6):59.
[3] Schofield JH, Schafer ZT. Mitochondrial reactive oxygen
species and mitophagy: a complex and nuanced relationship[J].
Antioxid Redox Signal, 2021, 34(7):517-530.
[4] Fukai T, Ushio-Fukai M. Cross-talk between NADPH oxidase
and mitochondria: role in ROS signaling and angiogenesis[J].
Cells, 2020, 9(8):1849.
[5] Dambrova M, Zuurbier CJ, Borutaite V, et al. Energy substrate
metabolism and mitochondrial oxidative stress in cardiac
ischemia/reperfusion injury[J]. Free Radic Biol Med, 2021,
165:24-37.
[6] Dubois-Deruy E, Peugnet V, Turkieh A, et al. Oxidative stress
in cardiovascular diseases[J]. Antioxidants, 2020, 9(9):864.
[7] Premer C, Kanelidis AJ, Hare JM, et al. Rethinking endothelial
dysfunction as a crucial target in fighting heart failure[J].
Mayo Clin Proc Innov Qual Outcomes, 2019, 3(1):1-13.
[8] Dambrova M, Zuurbier CJ, Borutaite V, et al. Energy substrate
metabolism and mitochondrial oxidative stress in cardiac
ischemia/reperfusion injury[J]. Free Radic Biol Med, 2021,
165:24-37.
[9] Murashige D, Jang C, Neinast M, et al. Comprehensive
quantification of fuel use by the failing and nonfailing human
heart[J]. Science, 2020, 370(6514):364-368.
[10] Pollak NM, Hoffman M, Goldberg IJ, et al. Krüppel-like
factors: crippling and un-crippling metabolic pathways[J].
JACC Basic Transl Sci, 2018, 3(1):132-156.
[11] Tung B, Xia S. Kruppel-Like factor 4 (KLF4) and its
regulation on mitochondrial homeostasis[J]. Stem Cell Res
Ther, 2018, 8(9):436.
[12] Chang G, Chen Y, Zhang H, et al. Trans sodium crocetinate
alleviates ischemia/reperfusion-induced myocardial oxidative
stress and apoptosis via the SIRT3/FOXO3a/SOD2 signaling
pathway[J]. Int Immunopharmacol, 2019, 71:361-371.
[13] Chen P, Zhan Q, Bai Y, et al. Serum peroxisome proliferatoractivated
receptor gamma coactivator-1α related to
myocardial energy expenditure in patients with chronic heart
failure[J]. Am J Med Sci, 2019, 357(3):205-212.
[14] Zhu N, Yan X, Li H, et al. Clinical significance of serum PGC-1
alpha levels in diabetes mellitus with myocardial infarction
patients and reduced ROS-oxidative stress in diabetes mellitus
with myocardial infarction model[J]. Diabetes Metab Syndr
Obes, 2020, 13:4041-4049.
[15] Kulikova TG, Stepanova OV, Voronova AD, et al. Pathological
remodeling of the myocardium in chronic heart failure: role of
PGC-1α[J]. Bull Exp Biol Med, 2018, 164(6):794-797.
[16] Bhatt KN, Butler J. Myocardial energetics and heart failure:
a review of recent therapeutic trials[J]. Curr Heart Fail Rep,
2018, 15(3):191-197.
[17] Chen X, Li Y, Feng M, et al. Maduramicin induces cardiac
muscle cell death by the ROS-dependent PTEN/Akt-Erk1/2
signaling pathway[J]. J Cell Physiol, 2019, 234(7):10964-
10976.
[18] Gao Y, Zhao D, Xie WZ, et al. Rap1GAP mediates angiotensin Ⅱ-induced
cardiomyocyte hypertrophy by inhibiting autophagy and
increasing oxidative stress[J]. Oxid Med Cell Longev, 2021,
2021:7848027.
[19] Chen L, Zhang Z, Hoshino A, et al. NADPH production by
the oxidative pentose-phosphate pathway supports folate
metabolism[J]. Nat Metab, 2019, 1:404-415.
[20] Kiyuna LA, Albuquerque RPE, Chen C, et al. Targeting
mitochondrial dysfunction and oxidative stress in heart failure:
challenges and opportunities[J]. Free Radic Biol Med, 2018,
129:155-168.