索引超出了数组界限。
[1] Wang J, Toan S, Zhou H. New insights into the role of
mitochondria in cardiac microvascular ischemia/reperfusion
injury[J]. Angiogenesis, 2020, 23(3):299-314.
[2] Beijk MA, Vlastra WV, Delewi R, et al. Myocardial infarction
with non-obstructive coronary arteries: a focus on vasospastic
angina[J]. Neth Heart J, 2019, 27(5):237-245.
[3] Tunc E, Eve AA, Madak-Erdogan Z. Coronary microvascular
dysfunction and estrogen receptor signaling[J]. Trends
Endocrinol Metab, 2020, 31(3):228-238.
[4] Nihei T, Takahashi J, Hao K, et al. Prognostic impacts of
Rho-kinase activity in circulating leucocytes in patients with
vasospastic angina[J]. Eur Heart J, 2018, 39(11):952-959.
[5] Liu ZW, Pan S. Endoplasmic reticulum stress-midia PERK
signaling induces coronary microvascular dysfunction in
non-obstructive coronary artery disease complicated with
diabetes[J]. J Am Coll Cardiol, 2020, 75(11):1205-1468.
[6] Gao J, Wang S, Liu S. The involvement of protein TNFSF18
in promoting p-STAT1 phosphorylation to induce coronary
microcirculation disturbance in atherosclerotic mouse
model[J]. Drug Dev Res, 2021, 82(1):115-122.
[7] Kunadian V, Chieffo A, Camici PG, et al. An EAPCI expert
consensus document on ischaemia with non-obstructive
coronary arteries in collaboration with European society of
cardiology working group on coronary pathophysiology &
microcirculation endorsed by coronary vasomotor disorders
international study group[J]. Euro Intervention, 2021,
16(13):1049-1069.
[8] Ford TJ, Corcoran D, Padmanabhan S, et al. Genetic dysregulation of endothelin-1 is implicated in coronary microvascular
dysfunction[J]. Eur Heart J, 2020, 41(34):3239-3252.
[9] Ford TJ, Yii E, Sidik N, et al. Ischemia and no obstructive
coronary artery disease: prevalence and correlates of coronary
vasomotion disorders[J]. Circ Cardiovasc Interv, 2019,
12(12):e008126.
[10] Armstrong PW, Roessig L, Patel MJ, et al. A multicenter,
randomized, double-blind, placebo-controlled trial of the
efficacy and safety of the oral soluble guanylate cyclase
stimulator: the Victoria trial[J]. JACC Heart Fail, 2018,
6(2):96-104.
[11] Yang JH, Obokata M, Reddy Y, et al. Endothelium-dependent
and independent coronary microvascular dysfunction in
patients with heart failure with preserved ejection fraction[J].
Eur J Heart Fail, 2020, 22(3):432-441.
[12] Anderson RD, Pepine CJ. The coronary microcirculation in
STEMI: the next frontier?[J]. Eur Heart J, 2015, 36(45):3178-
3181.
[13] Reindl M, Reinstadler SJ, Feistritzer HJ, et al. Relation of
inflammatory markers with myocardial and microvascular
injury in patients with reperfused ST-elevation myocardial
infarction[J]. Eur Heart J Acute Cardiovasc Care, 2017,
6(7):640-649.
[14] De Maria GL, Cuculi F, Patel N, et al. How does coronary
stent implantation impact on the status of the microcirculation
during primary percutaneous coronary intervention in patients
with ST-elevation myocardial infarction?[J]. Eur Heart J,
2015, 36(45):3165-3177.
[15] De Vita A, Manfredonia L, Lamendola P, et al. Coronary
microvascular dysfunction in patients with acute coronary
syndrome and no obstructive coronary artery disease[J]. Clin
Res Cardiol, 2019, 108(12):1364-1370.
[16] Schroder J, Michelsen MM, Mygind ND, et al. Coronary flow
velocity reserve predicts adverse prognosis in women with
angina and no obstructive coronary artery disease: results from
the iPOWER study[J]. Eur Heart J, 2021, 42(3):228-239.
[17] Zhou W, Lee J, Leung ST, et al. Long-term prognosis of
patients with coronary microvascular disease using stress
perfusion cardiac magnetic resonance[J]. JACC Cardiovasc
Imaging, 2021, 14(3):602-611.
[18] Liu X, Wang Y, Tang M, et al. Three-dimensional visualization
of coronary microvasculature in rats with myocardial
infarction[J]. Microvasc Res, 2020, 130:103990.
[19] Nowroozpoor A, Gutterman D, Safdar B. Is microvascular
dysfunction a systemic disorder with common biomarkers
found in the heart, brain, and kidneys? A scoping review[J].
Microvasc Res, 2021, 134:104123.
[20] Aslan G, Polat V, Bozcali E, et al. Evaluation of serum sST2
and sCD40L values in patients with microvascular angina[J].
Microvasc Res, 2019, 122:85-93.
[21] Bairey Merz CN, Pepine CJ, Shimokawa H, et al. Treatment of
coronary microvascular dysfunction[J]. Cardiovasc Res, 2020,
116(4):856-870.
[22] Suda A, Takahashi J, Hao K, et al. Coronary functional
abnormalities in patients with angina and nonobstructive
coronary artery disease[J]. J Am Coll Cardiol, 2019,
74(19):2350-2360.
[23] Firman D, Alkatiri AA, Taslim I, et al. Effect of thrombus
aspiration on microcirculatory resistance and ventricular
function in patients with high thrombus burden[J]. BMC
Cardiovasc Disord, 2020, 20(1):153.
[24] Jang JH, Lee MJ, Ko KY, e t a l. Mechanical and
pharmacological revascularization strategies for prevention of
microvascular dysfunction in ST-segment elevation myocardial
infarction: analysis from index of microcirculatory resistance
registry data[J]. J Interv Cardiol, 2020, 2020:5036396.
[25] Xu J, Lo S, Juergens CP, et al. Impact of targeted therapies for
coronary microvascular dysfunction as assessed by the index
of microcirculatory resistance[J]. J Cardiovasc Transl Res,
2021, 14(2):327-337.
[26] Solomon SD, Zile M, Pieske B, et al. The angiotensin
receptor neprilysin inhibitor LCZ696 in heart failure with
preserved ejection fraction: a phase 2 double-blind randomised
controlled trial[J]. Lancet, 2012, 380(9851):1387-1395.
[27] Gronda E, Vanoli E, Iacoviello M. The PARAGON-HF trial:
the sacubitril/valsartan in heart failure with preserved ejection
fraction[J]. Eur Heart J Suppl, 2020, 22(Suppl L):L77-L81.
[28] Pieske B, Wachter R, Shah SJ, et al. Effect of sacubitril/
valsartan vs standard medical therapies on plasma NTproBNP
concentration and submaximal exercise capacity in
patients with heart failure and preserved ejection fraction:
the PARALLAX randomized clinical trial[J]. JAMA, 2021,
326(19):1919-1929.
[29] Januzzi JL, Prescott MF, Butler J, et al. Association of change
in N-terminal pro-B-type natriuretic peptide following
initiation of sacubitril-valsartan treatment with cardiac
structure and function in patients with heart failure with
reduced ejection fraction[J]. JAMA, 2019, 322(11):1085-1095.
[30] Hara H, Takeda N, Kondo M, et al. Discovery of a small
molecule to increase cardiomyocytes and protect the heart after
ischemic injury[J]. JACC Basic Transl Sci, 2018, 3(5):639-653.
[31] 姚玉斯, 曾智桓, 赵艳群, 等. 麝香通心滴丸改善猪心肌缺
血再灌注后冠脉微循环和心功能[J]. 南方医科大学学报,
2020, 40(6):899-906.
[32] 赵韶华, 高海青. 物理康复在冠状动脉微循环血运重建中作
用的研究进展[J]. 中华老年医学杂志, 2020, 39(1):20-22.