索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]凌浩,刘明明,于雪.冠状动脉微血管功能障碍研究进展[J].国际心血管病杂志,2022,02:65-68.
点击复制

冠状动脉微血管功能障碍研究进展(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2022年02期
页码:
65-68
栏目:
综述
出版日期:
2022-06-01

文章信息/Info

Title:
-
作者:
凌浩刘明明于雪
心外膜冠状动脉(冠脉)“正常或接近正常”心肌缺血的主要原因为冠脉微循 环异常。寻找微循环功能血清标志物,研发冠脉微循环功能测评新技术,采用冠脉微循环治 疗新策略,有助于改善冠脉疾病患者的临床预后和转归。
Author(s):
-
关键词:
-
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2022.02.001
文献标识码:
-
摘要:
冠状动脉;微循环;微血管内皮细胞;冠状动脉微血管疾病;非阻塞性冠状动 脉疾病
Abstract:
-

参考文献/References

[1] Wang J, Toan S, Zhou H. New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury[J]. Angiogenesis, 2020, 23(3):299-314.
[2] Beijk MA, Vlastra WV, Delewi R, et al. Myocardial infarction with non-obstructive coronary arteries: a focus on vasospastic angina[J]. Neth Heart J, 2019, 27(5):237-245.
[3] Tunc E, Eve AA, Madak-Erdogan Z. Coronary microvascular dysfunction and estrogen receptor signaling[J]. Trends Endocrinol Metab, 2020, 31(3):228-238.
[4] Nihei T, Takahashi J, Hao K, et al. Prognostic impacts of Rho-kinase activity in circulating leucocytes in patients with vasospastic angina[J]. Eur Heart J, 2018, 39(11):952-959.
[5] Liu ZW, Pan S. Endoplasmic reticulum stress-midia PERK signaling induces coronary microvascular dysfunction in non-obstructive coronary artery disease complicated with diabetes[J]. J Am Coll Cardiol, 2020, 75(11):1205-1468.
[6] Gao J, Wang S, Liu S. The involvement of protein TNFSF18 in promoting p-STAT1 phosphorylation to induce coronary microcirculation disturbance in atherosclerotic mouse model[J]. Drug Dev Res, 2021, 82(1):115-122.
[7] Kunadian V, Chieffo A, Camici PG, et al. An EAPCI expert consensus document on ischaemia with non-obstructive coronary arteries in collaboration with European society of cardiology working group on coronary pathophysiology & microcirculation endorsed by coronary vasomotor disorders international study group[J]. Euro Intervention, 2021, 16(13):1049-1069.
[8] Ford TJ, Corcoran D, Padmanabhan S, et al. Genetic dysregulation of endothelin-1 is implicated in coronary microvascular dysfunction[J]. Eur Heart J, 2020, 41(34):3239-3252.
[9] Ford TJ, Yii E, Sidik N, et al. Ischemia and no obstructive coronary artery disease: prevalence and correlates of coronary vasomotion disorders[J]. Circ Cardiovasc Interv, 2019, 12(12):e008126.
[10] Armstrong PW, Roessig L, Patel MJ, et al. A multicenter, randomized, double-blind, placebo-controlled trial of the efficacy and safety of the oral soluble guanylate cyclase stimulator: the Victoria trial[J]. JACC Heart Fail, 2018, 6(2):96-104.
[11] Yang JH, Obokata M, Reddy Y, et al. Endothelium-dependent and independent coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction[J]. Eur J Heart Fail, 2020, 22(3):432-441.
[12] Anderson RD, Pepine CJ. The coronary microcirculation in STEMI: the next frontier?[J]. Eur Heart J, 2015, 36(45):3178- 3181.
[13] Reindl M, Reinstadler SJ, Feistritzer HJ, et al. Relation of inflammatory markers with myocardial and microvascular injury in patients with reperfused ST-elevation myocardial infarction[J]. Eur Heart J Acute Cardiovasc Care, 2017, 6(7):640-649.
[14] De Maria GL, Cuculi F, Patel N, et al. How does coronary stent implantation impact on the status of the microcirculation during primary percutaneous coronary intervention in patients with ST-elevation myocardial infarction?[J]. Eur Heart J, 2015, 36(45):3165-3177.
[15] De Vita A, Manfredonia L, Lamendola P, et al. Coronary microvascular dysfunction in patients with acute coronary syndrome and no obstructive coronary artery disease[J]. Clin Res Cardiol, 2019, 108(12):1364-1370.
[16] Schroder J, Michelsen MM, Mygind ND, et al. Coronary flow velocity reserve predicts adverse prognosis in women with angina and no obstructive coronary artery disease: results from the iPOWER study[J]. Eur Heart J, 2021, 42(3):228-239.
[17] Zhou W, Lee J, Leung ST, et al. Long-term prognosis of patients with coronary microvascular disease using stress perfusion cardiac magnetic resonance[J]. JACC Cardiovasc Imaging, 2021, 14(3):602-611.
[18] Liu X, Wang Y, Tang M, et al. Three-dimensional visualization of coronary microvasculature in rats with myocardial infarction[J]. Microvasc Res, 2020, 130:103990.
[19] Nowroozpoor A, Gutterman D, Safdar B. Is microvascular dysfunction a systemic disorder with common biomarkers found in the heart, brain, and kidneys? A scoping review[J]. Microvasc Res, 2021, 134:104123.
[20] Aslan G, Polat V, Bozcali E, et al. Evaluation of serum sST2 and sCD40L values in patients with microvascular angina[J]. Microvasc Res, 2019, 122:85-93.
[21] Bairey Merz CN, Pepine CJ, Shimokawa H, et al. Treatment of coronary microvascular dysfunction[J]. Cardiovasc Res, 2020, 116(4):856-870.
[22] Suda A, Takahashi J, Hao K, et al. Coronary functional abnormalities in patients with angina and nonobstructive coronary artery disease[J]. J Am Coll Cardiol, 2019, 74(19):2350-2360.
[23] Firman D, Alkatiri AA, Taslim I, et al. Effect of thrombus aspiration on microcirculatory resistance and ventricular function in patients with high thrombus burden[J]. BMC Cardiovasc Disord, 2020, 20(1):153.
[24] Jang JH, Lee MJ, Ko KY, e t a l. Mechanical and pharmacological revascularization strategies for prevention of microvascular dysfunction in ST-segment elevation myocardial infarction: analysis from index of microcirculatory resistance registry data[J]. J Interv Cardiol, 2020, 2020:5036396.
[25] Xu J, Lo S, Juergens CP, et al. Impact of targeted therapies for coronary microvascular dysfunction as assessed by the index of microcirculatory resistance[J]. J Cardiovasc Transl Res, 2021, 14(2):327-337.
[26] Solomon SD, Zile M, Pieske B, et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial[J]. Lancet, 2012, 380(9851):1387-1395.
[27] Gronda E, Vanoli E, Iacoviello M. The PARAGON-HF trial: the sacubitril/valsartan in heart failure with preserved ejection fraction[J]. Eur Heart J Suppl, 2020, 22(Suppl L):L77-L81.
[28] Pieske B, Wachter R, Shah SJ, et al. Effect of sacubitril/ valsartan vs standard medical therapies on plasma NTproBNP concentration and submaximal exercise capacity in patients with heart failure and preserved ejection fraction: the PARALLAX randomized clinical trial[J]. JAMA, 2021, 326(19):1919-1929.
[29] Januzzi JL, Prescott MF, Butler J, et al. Association of change in N-terminal pro-B-type natriuretic peptide following initiation of sacubitril-valsartan treatment with cardiac structure and function in patients with heart failure with reduced ejection fraction[J]. JAMA, 2019, 322(11):1085-1095.
[30] Hara H, Takeda N, Kondo M, et al. Discovery of a small molecule to increase cardiomyocytes and protect the heart after ischemic injury[J]. JACC Basic Transl Sci, 2018, 3(5):639-653.
[31] 姚玉斯, 曾智桓, 赵艳群, 等. 麝香通心滴丸改善猪心肌缺 血再灌注后冠脉微循环和心功能[J]. 南方医科大学学报, 2020, 40(6):899-906.
[32] 赵韶华, 高海青. 物理康复在冠状动脉微循环血运重建中作 用的研究进展[J]. 中华老年医学杂志, 2020, 39(1):20-22.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(81900747);北京市自然科学基金 (7212068) 作者单位:410004 南华大学附属长沙中心医院( 凌浩); 100005 中国医学科学院北京协和医学院微循环研究所(刘明明); 100730 北京医院心内科 国家老年医学中心(于雪)
通信作者:刘明明, E-mail: mingmingliu@imc.pumc.edu.cn
更新日期/Last Update: 2022-06-01