索引超出了数组界限。
[1] Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990—2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2019, 394(1204):1145-1158.
[2] Shirazi LF, Bissett J, Romeo F, et al. Role of inflammation in heart failure[J]. Curr Atheroscler Rep, 2017, 19(6):28432635.
[3] Wang Q, Wu J, Zeng Y, et al. Pyroptosis: a pro-inflammatory type of cell death in cardiovascular disease[J]. Clin Chim Acta, 2020, 510:62-72.
[4] Shi JJ, Zhao YE, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature, 2015, 526(7575):660-665.
[5] Kovacs SB, Miao EA. Gasdermins: effectors of pyroptosis[J]. Trends Cell Biol, 2017, 27(9):673-684.
[6] Liu Z, Wang C, Rathkey JK, et al. Structures of the gasdermin D C-terminal domains reveal mechanisms of autoinhibition[J]. Structure, 2018, 26(5):778-784.
[7] Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling[J]. Nature, 2015, 526(7575):666-671.
[8] Sborgi L, Rühl S, Mulvihill E, et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death[J]. EMBO J, 2016, 35(16):1766-1778.
[9] Aglietti RA, Estevez A, Gupta A, et al. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes[J]. Proc Natl Acad Sci U S A, 2016, 113(28):7858-7863.
[10] Ding J, Wang K, Liu W,et al. Pore-forming activity and structural autoinhibition of the gasdermin family[J]. Nature, 2016, 535(7610):111-116.
[11] Liu X, Zhang Z, Ruan J,et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores[J]. Nature, 2016, 535(7610):153-158.
[12] Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018[J]. Cell Death Differ, 2018, 25(3):486-541.
[13] Jia C, Chen H, Zhang J, et al. Role of pyroptosis in cardiovascular diseases[J]. Int Immunopharmacol, 2019, 67:311-318.
[14] De GA, Martinon F. Pyroptosis: caspase-11 unlocks the gates of death[J]. Immunity, 2015, 43(5):835-837.
[15] Murphy SP, Kakkar R, Mccarthy CP, et al. Inflammation in heart failure: JACC State-of-the-Art review[J]. J Am Coll Cardiol, 2020, 75(11):1324-1340.
[16] Suetomi T, Willeford A, Brand CS, et al. Inflammation and NLRP3 inflammasome activation initiated in response to pressure overload by Ca2+/calmodulin-dependent protein kinase Ⅱ δ signaling in cardiomyocytes are essential for adverse cardiac remodeling[J]. Circulation, 2018, 138(22):2530-2544.
[17] Bai B, Yang Y, Wang Q, et al. NLRP3 inflammasome in endothelial dysfunction[J]. Cell Death Dis, 2020, 11(9):776.
[18] Li RJ, Lu KY, Wang Y, et al. Triptolide attenuates pressure overload-induced myocardial remodeling in mice via the inhibition of NLRP3 inflammasome expression[J]. Biochem Biophys Res Commun, 2017, 485(1):69-75.
[19] Butts B, Gary RA, Dunbar SB, et al. The importance of NLRP3 inflammasome in heart failure[J]. J Card Fail, 2015, 21(7):586-593.
[20] O'Brien LC, Mezzaroma E, Van Tassell BW, et al. Interleukin-18 as a therapeutic target in acute myocardial infarction and heart failure[J]. Mol Med, 2014, 20(1):221-229.
[21] Segiet OA, Piecuch A, Mielanczyk L, et al. Role of interleukins in heart failure with reduced ejection fraction[J]. Anatol J Cardiol, 2019, 22(6):287-299.
[22] Harouki N, Nicol L, Remy-Jouet I, et al. The IL-1β antibody gevokizumab limits cardiac remodeling and coronary dysfunction in rats with heart failure[J]. JACC Basic Transl Sci, 2017, 2(4):418-430.
[23] Shang L, Yue W, Wang D, et al. Systolic overload-induced pulmonary inflammation, fibrosis, oxidative stress and heart failure progression through interleukin-1β[J]. J Mol Cell Cardiol, 2020, 146:84-94.
[24] El Khoury N, Mathieu S, Fiset C. Interleukin-1β reduces L-type Ca2+ current through protein kinase C∈ activation in mouse heart[J]. J Biol Chem, 2014, 289(32):21896-21908.
[25] Liu T, Zhang DY, Zhou YH, et al. Increased serum HMGB1 level may predict the fatal outcomes in patients with chronic heart failure[J]. Int J Cardiol, 2015, 184:318-320.
[26] Marsh AM, Nguyen AH, Parker TM, et al. Clinical use of high mobility group box 1 and the receptor for advanced glycation end products in the prognosis and risk stratification of heart failure: a literature review[J]. Can J Physiol Pharmacol, 2017, 95(3):253-259.
[27] Lin Y, Chen L, Li W, et al. Role of high-mobility group box-1 in myocardial ischemia/reperfusion injury and the effect of ethyl pyruvate[J]. Exp Ther Med, 2015, 9(4):1537-1541.
[28] Rathkey JK, Zhao J, Liu Z, et al. Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis[J]. Sci Immunol, 2018, 3(26):eaat2738.
[29] Rashidi M, Simpson DS, Hempel A, et al. The pyroptotic cell death effector gasdermin D is activated by gout-associated uric acid crystals but is dispensable for cell death and IL-1β release[J]. J Immunol, 2019, 203(3):736-748.
[30] Hu JJ, Liu X, Xia S, et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation[J]. Nat Immunol, 2020, 21(7):736-745.
[31] Do Carmo H, Arjun S, Petrucci O, et al. The caspase 1 inhibitor VX-765 protects the isolated rat heart via the RISK pathway[J]. Cardiovasc Drugs Ther, 2018, 32(2):165-168.
[32] Yang XM, Downey JM, Cohen MV, et al. The highly selective caspase-1 inhibitor VX-765 provides additive protection against myocardial infarction in rat hearts when combined with a platelet inhibitor[J]. J Cardiovasc Pharmacol Ther, 2017, 22(6):574-578.
[33] Audia JP, Yang XM, Crockett ES, et al. Caspase-1 inhibition by VX-765 administered at reperfusion in P2Y(12)receptor antagonist-treated rats provides long-term reduction in myocardial infarct size and preservation of ventricular function[J]. Basic Res Cardiol, 2018, 113(5):32.