索引超出了数组界限。
[1] Serasanambati M, Chilakapati SR. Function of nuclear factor kappa B(NF-κB)in human diseases[J]. South Indian Journal of Biological Sciences, 2016, 2(4):368-387.
[2] Mussbacher M, Salzmann M, Brostjan C, et al. Cell type-specific roles of NF-κB linking inflammation and thrombosis[J]. Front Immunol, 2019, 10:85.
[3] Gilmore TD, Garbati MR. Inhibition of NF-κB signaling as a strategy in disease therapy[J]. Curr Top Microbiol Immunol, 2011, 349:245-263.
[4] Pires BRB, Silva RCMC, Ferreira GM, et al. NF-kappaB: two sides of the same coin[J]. Genes(Basel), 2018, 9(1):24.
[5] Mitchell JP, Carmody RJ. NF-κB and the transcriptional control of inflammation[J]. Int Rev Cell Mol Biol, 2018, 335:41-84.
[6] Sun SC. The non-canonical NF-κB pathway in immunity and inflammation[J]. Nat Rev Immunol, 2017, 17(9):545-558.
[7] Zhou X, Han X, Wittfeldt A, et al. Long non-coding RNA ANRIL regulates inflammatory responses as a novel component of NF-κB pathway[J]. RNA Biol, 2016, 13(1):98-108.
[8] Vanhoutte PM, Shimokawa H, Feletou M, et al. Endothelial dysfunction and vascular disease-a 30th anniversary update[J]. Acta Physiologica, 2017, 219(1):22-96.
[9] Zhang J, DeFelice AF, Hanig JP, et al. Biomarkers of endothelial cell activation serve as potential surrogate markers for drug-induced vascular injury[J]. Toxicol Pathol, 2010, 38(6):856-871.
[10] Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease[J]. Biochem Pharmacol, 2009, 78(6):539-552.
[11] Wen JM, Lin T, Wu W, et al. Tiaopi huxin recipe improved endothelial dysfunction and attenuated atherosclerosis by decreasing the expression of caveolin-1 in ApoE-deficient mice[J]. J Cell Physiol, 2019, 234(9):15369-15379.
[12] Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease[J]. N Engl J Med, 2017, 377(12):1119-1131.
[13] Montanari E, Stojkovic S, Kaun C, et al. Interleukin-33 stimulates GM-CSF and M-CSF production by human endothelial cells[J]. Thromb Haemost, 2016, 116(2):317-327.
[14] Cho KY, Miyoshi H, Kuroda S, et al. The phenotype of infiltrating macrophages influences arteriosclerotic plaque vulnerability in the carotid artery[J]. J Stroke Cerebrovasc Dis, 2013, 22(7):910-918.
[15] da Silva RF, Lappalainen J, Lee-Rueckert M, et al. Conversion of human M-CSF macrophages into foam cells reduces their proinflammatory responses to classical M1-polarizing activation[J]. Atherosclerosis, 2016, 248:170-178.
[16] Xie Z, Wang X, Liu X, et al. Adipose-derived exosomes exert proatherogenic effects by regulating macrophage foam cell formation and polarization[J]. J Am Heart Assoc, 2018, 7(5):e007442.
[17] Ben J, Jiang B, Wang D, et al. Major vault protein suppresses obesity and atherosclerosis through inhibiting IKK-NF-κB signaling mediated inflammation[J]. Nat Commun, 2019, 10(1):1801.
[18] Yang S, Li J, Chen Y, et al. MicroRNA-216a promotes M1 macrophages polarization and atherosclerosis progression by activating telomerase via the Smad3/NF-κB pathway[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(7):1772-1781.
[19] Jiao L, Jiang M, Liu J, et al. Nuclear factor-kappa B activation inhibits proliferation and promotes apoptosis of vascular smooth muscle cells[J]. Vascular, 2018, 26(6):634-640.
[20] Ali MS, Starke RM, Jabbour PM, et al. TNF-α induces phenotypic modulation in cerebral vascular smooth muscle cells: implications for cerebral aneurysm pathology[J]. J Cereb Blood Flow Metab, 2013, 33(10):1564-1573.
[21] Kong P, Yu Y, Wang L, et al. circ-Sirt1 controls NF-κB activation via sequence-specific interaction and enhancement of SIRT1 expression by binding to miR-132/212 in vascular smooth muscle cells[J]. Nucleic Acids Res, 2019, 47(7):3580-3593.
[22] Brown RA, Shantsila E, Varma C, et al. Current understanding of atherogenesis[J]. Am J Med, 2017, 130(3):268-282.
[23] Nguyen PA, Won JS, Rahman MK, et al. Modulation of Sirt1/NF-κB interaction of evogliptin is attributed to inhibition of vascular inflammatory response leading to attenuation of atherosclerotic plaque formation[J]. Biochem Pharmacol, 2019, 168:452-464.
[24] Gargiulo S, Gamba P, Testa G, et al. Relation between TLR4/NF-κB signaling pathway activation by 27-hydroxycholesterol and 4-hydroxynonenal, and atherosclerotic plaque instability[J]. Aging Cell, 2015, 14(4):569-581.
[25] Geng J, Liu H, Ge P, et al. PM2.5 promotes plaque vulnerability at different stages of atherosclerosis and the formation of foam cells via TLR4/MyD88/NFκB pathway[J]. Ecotoxicol Environ Saf, 2019, 176:76-84.
[26] Ong SB, Hernandez-Resendiz S, Crespo-Avilan GE, et al. Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities[J]. Pharmacol Ther, 2018, 186:73-87.
[27] Fujiwara M, Matoba T, Koga J, et al. Nanoparticle incorporating Toll-like receptor 4 inhibitor attenuates myocardial ischaemia-reperfusion injury by inhibiting monocyte-mediated inflammation in mice[J]. Cardiovasc Res, 2019, 115(7):1244-1255.
[28] 何忠开, 郑玉菡, 姚峰, 等. 白藜芦醇通过沉默信息调节因子1/核因子κB通路改善大鼠急性心肌梗死后炎症反应的研究[J]. 中国心血管杂志, 2019, 24(5):452-455.
[29] Sakai N, Van SH, Schuster R, et al. Receptor activator of nuclear factor-κB ligand(RANKL)protects against hepatic ischemia/reperfusion injury in mice[J]. Hepatology, 2012, 55(3):888-897.
[30] Shimamura M, Nakagami H, Osako MK, et al. OPG/RANKL/RANK axis is a critical inflammatory signaling system in ischemic brain in mice[J]. Proc Natl Acad Sci U S A, 2014, 111(22):8191-8196.
[31] Carbone F, Crowe LA, Roth A, et al. Treatment with anti-RANKL antibody reduces infarct size and attenuates dysfunction impacting on neutrophil-mediated injury[J]. J Mol Cell Cardiol, 2016, 94:82-94.
[32] Slavic S, Andrukhova O, Ford K, et al. Selective inhibition of receptor activator of NF-κB ligand(RANKL)in hematopoietic cells improves outcome after experimental myocardial infarction[J]. J Mol Med(Berl), 2018, 96(6):559-573.