索引超出了数组界限。
[1] Ou J, Zhou Z, Chen Z, et al. Optical diagnostic based on functionalized gold nanoparticles[J]. Int J Mol Sci, 2019, 20(18):4346.
[2] de Carvalho TG, Garcia VB, de Araujo AA, et al. Spherical neutral gold nanoparticles improve anti-inflammatory response, oxidative stress and fibrosis in alcohol-methamphetamine-induced liver injury in rats[J]. Int J Pharm, 2018, 548(1):1-14.
[3] Tian A, Yang C, Zhu B, et al. Polyethylene-glycol-coated gold nanoparticles improve cardiac function after myocardial infarction in mice[J]. Can J Physiol Pharmacol, 2018, 96(12):1318-1327.
[4] Huo S, Ma H, Huang K, et al. Superior penetration and retention behavior of 50 nm gold nanoparticles in tumors[J]. Cancer Res, 2013, 73(1):319-330.
[5] Lin J, Zhang H, Chen Z, et al. Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship[J]. ACS Nano, 2010, 4(9):5421-5429.
[6] Somasuntharam I, Yehl K, Carroll SL, et al. Knockdown of TNF-alpha by DNAzyme gold nanoparticles as an anti-inflammatory therapy for myocardial infarction[J]. Biomaterials, 2016, 83:12-22.
[7] Chang Y, Lee E, Kim J, et al. Efficient in vivo direct conversion of fibroblasts into cardiomyocytes using a nanoparticle-based gene carrier[J]. Biomaterials, 2019, 192:500-509.
[8] Bakir EM, Younis NS, Mohamed ME, et al. Cyanobacteria as nanogold factories: chemical and anti-myocardial infarction properties of gold nanoparticles synthesized by lyngbya majuscula[J]. Mar Drugs, 2018, 16(6):217.
[9] Ibrar M, Khan MA, Abdullah, et al. Evaluation of Paeonia emodi and its gold nanoparticles for cardioprotective and antihyperlipidemic potentials[J]. J Photochem Photobiol B, 2018, 189:5-13.
[10] Ahmed SM, Abdelrahman SA, Salama AE. Efficacy of gold nanoparticles against isoproterenol induced acute myocardial infarction in adult male albino rats[J]. Ultrastruct Pathol, 2017, 41(2):168-185.
[11] Rodrigues ICP, Kaasi A, Maciel Filho R, et al. Cardiac tissue engineering: current state-of-the-art materials, cells and tissue formation[J]. Einstein(Sao Paulo), 2018, 16(3):eRB4538.
[12] Gorabi AM, Tafti SHA, Soleimani M, et al. Cells, scaffolds and their interactions in myocardial tissue regeneration[J]. J Cell Biochem, 2017, 118(8):2454-2462.
[13] Ravichandran R, Sridhar R, Venugopal JR, et al. Gold nanoparticle loaded hybrid nanofibers for cardiogenic differentiation of stem cells for infarcted myocardium regeneration[J]. Macromol Biosci, 2014, 14(4):515-525.
[14] Fleischer S, Shevach M, Feiner R, et al. Coiled fiber scaffolds embedded with gold nanoparticles improve the performance of engineered cardiac tissues[J]. Nanoscale, 2014, 6(16):9410-9414.
[15] Shevach M, Fleischer S, Shapira A, et al. Gold nanoparticle-decellularized matrix hybrids for cardiac tissue engineering[J]. Nano Lett, 2014, 14(10):5792-5796.
[16] 解锋, 钱晓庆, 徐志云. 水凝胶在心肌组织工程中的研究进展[J]. 中国心血管杂志, 2017, 22(5):369-372.
[17] 辛慧慧, 李屹, 白睿, 等. 金纳米星/胶原复合基质材料对新生大鼠心室肌细胞氧化应激损伤的影响[J]. 军事医学,2018, 249(2):48-53.
[18] Navaei A, Saini H, Christenson W, et al. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs[J]. Acta Biomater, 2016, 41:133-146.
[19] Baei P, Jalili-Firoozinezhad S, Rajabi-Zeleti S, et al. Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2016, 63:131-141.
[20] Saremi M, Amini A, Heydari H. An aptasensor for troponin Ⅰ based on the aggregation-induced electrochemiluminescence of nanoparticles prepared from a cyclometallated iridium(Ⅲ)complex and poly(4-vinylpyridine-co-styrene)deposited on nitrogen-doped graphene[J]. Mikrochim Acta, 2019, 186(4):254.
[21] Pu Q, Yang X, Guo Y, et al. Simultaneous colorimetric determination of acute myocardial infarction biomarkers by integrating self-assembled 3D gold nanovesicles into a multiple immunosorbent assay[J]. Mikrochim Acta, 2019, 186(3):138.
[22] Sharma AK, Pandey S, Nerthigan Y, et al. Aggregation of cysteamine-capped gold nanoparticles in presence of ATP as an analytical tool for rapid detection of creatine kinase(CK-MM)[J]. Anal Chim Acta, 2018, 1024:161-168.
[23] Zou B, Cheng H, Tu Y. An electrochemiluminescence immunosensor for myoglobin using an indium tin oxide glass electrode modified with gold nanoparticles and platinum nanowires[J]. Mikrochim Acta, 2019, 186(9):598.
[24] Kwon JH, Kim HT, Lee JH, et al. Signal self-enhancement by coordinated assembly of gold nanoparticles enables accurate one-step-immunoassays[J]. Nanoscale, 2017, 9(42):16476-16484.
[25] Qian X, Zhou X, Ran X, et al. Facile and clean synthesis of dihydroxylatopillar[5]arene-stabilized gold nanoparticles integrated Pd/MnO2 nanocomposites for robust and ultrasensitive detection of cardiac troponinⅠ[J]. Biosens Bioelectron, 2019, 130:214-224.