索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]王宽垠,曹国祥,兰晓莉,等.金纳米颗粒在急性心肌梗死诊疗中的应用[J].国际心血管病杂志,2021,01:25-27.
点击复制

金纳米颗粒在急性心肌梗死诊疗中的应用(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2021年01期
页码:
25-27
栏目:
综述
出版日期:
2021-01-20

文章信息/Info

Title:
-
作者:
王宽垠曹国祥兰晓莉覃春霞
430022 武汉,华中科技大学同济医学院附属协和医院核医学科分子影像湖北省重点实验室
Author(s):
-
关键词:
金纳米颗粒 急性心肌梗死 组织工程
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2021.01.007
文献标识码:
-
摘要:
金纳米颗粒是一种由金构成的纳米材料,它具有生物相容性、导电性、抗氧化性等优点。在急性心肌梗死诊疗方面,基于金纳米颗粒的研究已获得显著进展,如可用作递送载体降低心肌梗死标志物水平、改善损伤的心肌结构及参与心脏组织工程支架材料的构建等
Abstract:
-

参考文献/References

[1] Ou J, Zhou Z, Chen Z, et al. Optical diagnostic based on functionalized gold nanoparticles[J]. Int J Mol Sci, 2019, 20(18):4346.
[2] de Carvalho TG, Garcia VB, de Araujo AA, et al. Spherical neutral gold nanoparticles improve anti-inflammatory response, oxidative stress and fibrosis in alcohol-methamphetamine-induced liver injury in rats[J]. Int J Pharm, 2018, 548(1):1-14.
[3] Tian A, Yang C, Zhu B, et al. Polyethylene-glycol-coated gold nanoparticles improve cardiac function after myocardial infarction in mice[J]. Can J Physiol Pharmacol, 2018, 96(12):1318-1327.
[4] Huo S, Ma H, Huang K, et al. Superior penetration and retention behavior of 50 nm gold nanoparticles in tumors[J]. Cancer Res, 2013, 73(1):319-330.
[5] Lin J, Zhang H, Chen Z, et al. Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship[J]. ACS Nano, 2010, 4(9):5421-5429.
[6] Somasuntharam I, Yehl K, Carroll SL, et al. Knockdown of TNF-alpha by DNAzyme gold nanoparticles as an anti-inflammatory therapy for myocardial infarction[J]. Biomaterials, 2016, 83:12-22.
[7] Chang Y, Lee E, Kim J, et al. Efficient in vivo direct conversion of fibroblasts into cardiomyocytes using a nanoparticle-based gene carrier[J]. Biomaterials, 2019, 192:500-509.
[8] Bakir EM, Younis NS, Mohamed ME, et al. Cyanobacteria as nanogold factories: chemical and anti-myocardial infarction properties of gold nanoparticles synthesized by lyngbya majuscula[J]. Mar Drugs, 2018, 16(6):217.
[9] Ibrar M, Khan MA, Abdullah, et al. Evaluation of Paeonia emodi and its gold nanoparticles for cardioprotective and antihyperlipidemic potentials[J]. J Photochem Photobiol B, 2018, 189:5-13.
[10] Ahmed SM, Abdelrahman SA, Salama AE. Efficacy of gold nanoparticles against isoproterenol induced acute myocardial infarction in adult male albino rats[J]. Ultrastruct Pathol, 2017, 41(2):168-185.
[11] Rodrigues ICP, Kaasi A, Maciel Filho R, et al. Cardiac tissue engineering: current state-of-the-art materials, cells and tissue formation[J]. Einstein(Sao Paulo), 2018, 16(3):eRB4538.
[12] Gorabi AM, Tafti SHA, Soleimani M, et al. Cells, scaffolds and their interactions in myocardial tissue regeneration[J]. J Cell Biochem, 2017, 118(8):2454-2462.
[13] Ravichandran R, Sridhar R, Venugopal JR, et al. Gold nanoparticle loaded hybrid nanofibers for cardiogenic differentiation of stem cells for infarcted myocardium regeneration[J]. Macromol Biosci, 2014, 14(4):515-525.
[14] Fleischer S, Shevach M, Feiner R, et al. Coiled fiber scaffolds embedded with gold nanoparticles improve the performance of engineered cardiac tissues[J]. Nanoscale, 2014, 6(16):9410-9414.
[15] Shevach M, Fleischer S, Shapira A, et al. Gold nanoparticle-decellularized matrix hybrids for cardiac tissue engineering[J]. Nano Lett, 2014, 14(10):5792-5796.
[16] 解锋, 钱晓庆, 徐志云. 水凝胶在心肌组织工程中的研究进展[J]. 中国心血管杂志, 2017, 22(5):369-372.
[17] 辛慧慧, 李屹, 白睿, 等. 金纳米星/胶原复合基质材料对新生大鼠心室肌细胞氧化应激损伤的影响[J]. 军事医学,2018, 249(2):48-53.
[18] Navaei A, Saini H, Christenson W, et al. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs[J]. Acta Biomater, 2016, 41:133-146.
[19] Baei P, Jalili-Firoozinezhad S, Rajabi-Zeleti S, et al. Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2016, 63:131-141.
[20] Saremi M, Amini A, Heydari H. An aptasensor for troponin Ⅰ based on the aggregation-induced electrochemiluminescence of nanoparticles prepared from a cyclometallated iridium(Ⅲ)complex and poly(4-vinylpyridine-co-styrene)deposited on nitrogen-doped graphene[J]. Mikrochim Acta, 2019, 186(4):254.
[21] Pu Q, Yang X, Guo Y, et al. Simultaneous colorimetric determination of acute myocardial infarction biomarkers by integrating self-assembled 3D gold nanovesicles into a multiple immunosorbent assay[J]. Mikrochim Acta, 2019, 186(3):138.
[22] Sharma AK, Pandey S, Nerthigan Y, et al. Aggregation of cysteamine-capped gold nanoparticles in presence of ATP as an analytical tool for rapid detection of creatine kinase(CK-MM)[J]. Anal Chim Acta, 2018, 1024:161-168.
[23] Zou B, Cheng H, Tu Y. An electrochemiluminescence immunosensor for myoglobin using an indium tin oxide glass electrode modified with gold nanoparticles and platinum nanowires[J]. Mikrochim Acta, 2019, 186(9):598.
[24] Kwon JH, Kim HT, Lee JH, et al. Signal self-enhancement by coordinated assembly of gold nanoparticles enables accurate one-step-immunoassays[J]. Nanoscale, 2017, 9(42):16476-16484.
[25] Qian X, Zhou X, Ran X, et al. Facile and clean synthesis of dihydroxylatopillar[5]arene-stabilized gold nanoparticles integrated Pd/MnO2 nanocomposites for robust and ultrasensitive detection of cardiac troponinⅠ[J]. Biosens Bioelectron, 2019, 130:214-224.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(81873906,81401444)
通信作者:覃春霞,E-mail:qin_chunxia@hust.edu.cn
更新日期/Last Update: 2021-01-20