索引超出了数组界限。 文章摘要
|本期目录/Table of Contents|

[1]景昱 王宣春.巨噬细胞内脂质代谢及泡沫细胞形成机制的研究进展[J].国际心血管病杂志,2020,03:143-147.
点击复制

巨噬细胞内脂质代谢及泡沫细胞形成机制的研究进展(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2020年03期
页码:
143-147
栏目:
综述
出版日期:
2020-06-08

文章信息/Info

Title:
-
作者:
景昱 王宣春
200040 上海,复旦大学附属华山医院内分泌科
Author(s):
-
关键词:
动脉粥样硬化 巨噬细胞 泡沫细胞
Keywords:
-
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2020.03.005
文献标识码:
-
摘要:
动脉粥样硬化是以动脉内膜下胆固醇积聚为特征的慢性疾病。泡沫细胞是构成动脉粥样斑块的主要成分,大多由于巨噬细胞内脂质代谢紊乱引起。巨噬细胞通过胞饮、清道夫受体介导的方式吞噬胞外胆固醇,在胆固醇酰基转移酶1(ACAT1)和中性胆固醇酯水解酶(nCEH)作用下维持细胞内脂质平衡,多余的胆固醇可以通过ATP结合盒转运体A1(ABCA1)、ATP结合盒转运体G1(ABCG1)和清道夫受体B1(SR-B1)排出。该文介绍巨噬细胞内胆固醇摄取、酯化水解和外溢过程,以及泡沫细胞形成的机制。
Abstract:
-

参考文献/References

[ 1 ] Roth GA, Forouzanfar MH, Moran AE, et al. Demographic and epidemiologic drivers of global cardiovascular mortality[J]. N Engl J Med, 2015, 372(14):1333-1341.
[ 2 ] Lutgens E, Atzler D, D?ring Y, et al. Immunotherapy for cardiovascular disease[J]. Eur Heart J, 2019, 40(48):3937-3946.
[ 3 ] Cristina MR, Zhang XB, Bandyopadhyay C, et al. Caveolin-1 regulates atherogenesis by attenuating low-density lipoprotein transcytosis and vascular inflammation independently of endothelial nitric oxide synthase activation[J]. Circulation, 2019, 140(3):225-239.
[ 4 ] Chistiakov DA, Orekhov AN, Bobryshev YV. Endothelial barrier and its abnormalities in cardiovascular disease[J]. Front Physiol, 2015, 6:365.
[ 5 ] Yu XH, Fu YC, Zhang DW, et al. Foam cells in atherosclerosis[J]. Clin Chim Acta, 2013, 424:245-252.
[ 6 ] Chistiakov DA, Melnichenko AA, Myasoedova VA, et al. Mechanisms of foam cell formation in atherosclerosis[J]. J Mol Med(Berl), 2017, 95(11):1153-1165.
[ 7 ] Li YQ, Shen SX, Ding SK, et al. LincRNA DYN-LRB2-2 upregulates cholesterol efflux by decreasing TLR2 expression in macrophages[J]. J Cell Biochem, 2018, 119(2):1911-1921.
[ 8 ] Chistiakov DA, Melnichenko AA, Orekhov AN, et al. How do macrophages sense modified low-density lipoproteins?[J]. Int J Cardiol, 2017, 230:232-240.
[ 9 ] Doodnauth SA, Grinstein S, Maxson ME. Constitutive and stimulated macropinocytosis in macrophages: roles in immunity and in the pathogenesis of atherosclerosis[J]. Philos Trans R Soc Lond B Biol Sci, 2019, 374(1765):20180147.
[10] Michael DR, Ashlin TG, Davies CS, et al. Differential regulation of macropinocytosis in macrophages by cytokines: implications for foam cell formation and atherosclerosis[J]. Cytokine, 2013, 64(1):357-361.
[11] Miller YI, Choi SH, Wiesner P, et al. The SYK side of TLR4: signalling mechanisms in response to LPS and minimally oxidized LDL[J]. Br J Pharmacol, 2012, 167(5):990-999.
[12] Pacitto R, Gaeta I, Swanson JA, et al. CXCL12-induced macropinocytosis modulates two distinct pathways to activate mTORC1 in macrophages[J]. J Leukoc Biol, 2017, 101(3):683-692.
[13] Brown MS, Goldstein JL, Krieger M, et al. Reversible accumulation of cholesteryl esters in macrophages incubated with acetylated lipoproteins[J]. J Cell Biol, 1979, 82(3):597-613.
[14] Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance[J]. Nat Rev Immunol, 2013, 13(10):709-721.
[15] 刘红利, 孙颖, 郎艳松, 等. 单核/巨噬细胞脂质代谢和炎症在动脉粥样硬化中的作用[J].细胞与分子免疫学杂志, 2014, 30(11):1224-1227.
[16] Prabhudas M, Bowdish D, Drickamer K, et al. Standardizing scavenger receptor nomenclature[J]. J Immunol, 2014, 192(5):1997-2006.
[17] Suzuki H, Kurihara Y, Takeya M, et al. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection[J]. Nature, 1997, 386(6622):292-296.
[18] Babaev VR, Gleaves LA, Carter KJ, et al. Reduced atherosclerotic lesions in mice deficient for total or macrophage-specific expression of scavenger receptor-A[J]. Arterioscler Thromb Vasc Biol, 2000, 20(12):2593-2599.
[19] Van Eck M, Winther MD, Herijgers N, et al. Effect of human scavenger receptor class a overexpression in bone marrow-derived cells on cholesterol levels and atherosclerosis in ApoE-deficient mice[J]. Arterioscler Thromb Vasc Biol, 2000, 20(12):2600-2606.
[20] Daugherty A, Kosswig N, Cornicelli JA, et al. Macrophage-specific expression of class A scavenger receptors enhances granuloma formation in the absence of increased lipid deposition[J]. J Lipid Res, 2001, 42(7):1049-1055.
[21] Kuchibhotla S, Vanegas D, Kennedy DJ, et al. Absence of CD36 protects against atherosclerosis in ApoE knock-out mice with no additional protection provided by absence of scavenger receptor A Ⅰ/Ⅱ[J]. Cardiovasc Res, 2008, 78(1):185-196.
[22] Liu Z, Lei F, Zhu YQ, et al. Insulin antagonizes LPS-induced inflammatory responses by activating SR-A1/ERK axis in macrophages[J]. Inflammation, 2019, 42(2):754-762.
[23] Zong GJ, Zhu YQ, Yan Z, et al. SR-A1 suppresses colon inflammation and tumorigenesis through negative regulation of NF-κB signaling[J]. Biochem Pharmacol, 2018, 154:335-343.
[24] Miyatake S, Mizobe Y, Tsoumpra MK, et al. Scavenger receptor class a1 mediates uptake of morpholino antisense oligonucleotide into dystrophic skeletal muscle[J]. Mol Ther Nucleic Acids, 2019, 14:520-535.
[25] Park YM. CD36, a scavenger receptor implicated in atherosclerosis[J]. Exp Mol Med, 2014, 46(6):e99.
[26] Silverstein RL, Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior[J]. Sci Signal, 2009, 2(72):re3.
[27] Bergquist J. Proteomics to understand the degenerative matter[J]. Free Radic Biol Med, 2014, 75(Suppl 1):S10.
[28] Nagy L, Tontonoz P, Alvarez JG, et al. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma[J]. Cell, 1998, 93(2):229-240.
[29] Baker RG, Hayden MS, Ghosh S. NF-κB, inflammation, and metabolic disease[J]. Cell Metab, 2011, 13(1):11-22.
[30] Febbraio M, Guy E, Silverstein RL. Stem cell transplantation reveals that absence of macrophage CD36 is protective against atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2004, 24(12):2333-2338.
[31] Liu QY, Jiao F, Jing B, et al. IL-34 promotes foam cell formation by enhancing CD36 expression through p38 MAPK pathway[J]. Sci Rep, 2018, 8(1):17347.
[32] Yazgan B, Sozen E, Karademir B, et al. CD36 expression in peripheral blood mononuclear cells reflects the onset of atherosclerosis[J]. Biofactors, 2018, 44(6):588-596.
[33] Yamazaki H, Takahashi M, Wakabayashi T, et al. Loss of ACAT1 attenuates atherosclerosis aggravated by loss of NCEH1 in bone marrow-derived cells[J]. J Atheroscler Thromb, 2019, 26(3):246-259.
[34] Yagyu H, Tetsuya K, Jun-Ichi O, et al. Absence of ACAT-1 attenuates atherosclerosis but causes dry eye and cutaneous xanthomatosis in mice with congenital hyperlipidemia[J]. J Biol Chem, 2000, 275(28):21324-21330.
[35] Delsing DJ, Offerman EH, van Duyvenvoorde W, et al. Acyl-CoA: cholesterol acyltransferase inhibitor avasimibe reduces atherosclerosis in addition to its cholesterol-lowering effect in ApoE*3-Leiden mice[J]. Circulation, 2001, 103(13):1778-1786.
[36] Hongo S, Watanabe T, Arita S, et al. Leptin modulates ACAT1 expression and cholesterol efflux from human macrophages[J]. Am J Physiol Endocrinol Metab, 2009, 297(2):E474-E482.
[37] Nissen SE, Tuzcu EM, Brewer HB, et al. Effect of ACAT inhibition on the progression of coronary atherosclerosis[J]. N Engl J Med, 2006, 354(12):1253-1263.
[38] Ghosh S, Zhao B, Bie J, et al. Macrophage cholesteryl ester mobilization and atherosclerosis[J]. Vascul Pharmacol, 2010, 52(1/2):1-10.
[39] Levitt RC, Liu Z, Nouri N, et al. Mapping of the gene for hormone sensitive lipase(LIPE)to chromosome 19q13.1->q13.2[J]. Cytogenet Genome Res, 1995, 69(3/4):211-214.
[40] Escary JL, Choy HA, Reue K, et al. Paradoxical effect on atherosclerosis of hormone-sensitive lipase overexpression in macrophages[J]. J Lipid Res, 1999, 40(3):397-404.
[41] Nicole JL, Rachael LT, Hugh T, et al. TRAK2, a novel regulator of ABCA1 expression, cholesterol efflux and HDL biogenesis[J]. Eur Heart J, 2017, 38(48):3579-3587.
[42] Xin B, Vitali C, Cuchel M. ABCA1 and inflammation[J]. Arterioscler Thromb Vasc Biol, 2015, 35(7):1551-1553.
[43] Lorenzi I, Eckardstein AV, Cavelier C, et al. Apolipoprotein A-Ⅰ but not high-density lipoproteins are internalised by RAW macrophages: roles of ATP-binding cassette transporter A1 and scavenger receptor BI[J]. J Mol Med, 2008, 86(2):171-183.
[44] Ogura M, Makoto A, Terao Y, et al. Proteasomal inhibition promotes ATP-binding cassette transporter a1(ABCA1)and ABCG1 expression and cholesterol efflux from macrophages in vitro and in vivo[J]. Arterioscler Thromb Vasc Biol, 2011, 31(9):1980-1987.
[45] Chawla A, Boisvert WA, Chih-Hao L, et al. A PPARγ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis[J]. Mol Cell, 2001, 7(1):161-171.
[46] Lee SM, Moon J, Cho Y, et al. Quercetin up-regulates expressions of peroxisome proliferator-activated receptor γ, liver X receptor α, and ATP binding cassette transporter A1 genes and increases cholesterol efflux in human macrophage cell line[J]. Nutr Res, 2013, 33(2):136-143.
[47] Jiang T, Ren K, Chen Q, et al. Leonurine prevents atherosclerosis via promoting the expression of ABCA1 and ABCG1 in a Pparγ/Lxrα signaling pathway-dependent manner[J]. Cell Physiol Biochem, 2017, 43(4):1703-1717.
[48] Lu J, Chen X, Xu X, et al. Active polypeptides from Hirudo inhibit endothelial cell inflammation and macrophage foam cell formation by regulating the LOX-1/LXR-α/ABCA1 pathway[J]. Biomed Pharmacother, 2019, 115:108840.
[49] Kennedy MA, Barrera GC, Nakamura K, et al. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation[J]. Cell Metab, 2005, 1(2):121-131.
[50] Wang X, Collins HL, Ranalletta M, et al. Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo[J]. J Clin Invest, 2007, 117(8):2216-2224.
[51] Helal O, Berrougui H, Loued S, et al. Extra-virgin olive oil consumption improves the capacity of HDL to mediate cholesterol efflux and increases ABCA1 and ABCG1 expression in human macrophages[J]. Br J Nutr, 2013, 109(10):1844-1855.
[52] Wang D, Xia M, Yan X, et al. Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b[J]. Circ Res, 2012, 111(8):967-981.
[53] Van Eck M, Twisk J, Hoekstra M, et al. Differential effects of scavenger receptor BI deficiency on lipid metabolism in cells of the arterial wall and in the liver[J]. J Biol Chem, 2003, 278(26):23699-23705.
[54] Kristina KD, George K, Kei CM, et al. Treatment with apolipoprotein A1 protects mice against doxorubicin-induced cardiotoxicity in a scavenger receptor class B, type I-dependent manner[J]. Am J Physiol Heart Circ Physiol, 2019, 316(6):H1447-H1457.
[55] Chen WE, Silver DL, Jonathan DS, et al. Scavenger receptor-BI inhibits ATP-binding cassette transporter 1- mediated cholesterol efflux in macrophages[J]. J Biol Chem, 2000, 275(40):30794-30800.
[56] Huang LZ, Chambliss KL, Gao XF, et al. SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis[J]. Nature, 2019, 569(7757):565-569.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(81873645)
作者单位:200040 上海,复旦大学附属华山医院内分泌科
通信作者:王宣春,E-mail:wangxch@fudan.edu.cn
更新日期/Last Update: 2020-06-08