|本期目录/Table of Contents|

[1]张煜 李宁 白一帆 刘晓红 龚德军 徐志云.猪主动脉瓣内皮细胞的分离与鉴定[J].国际心血管病杂志,2020,01:44-47.
 ZHANG Yu,LI Ning,BAI Yifan,et al.Isolation and identification of endothelial cells from porcine aortic valve[J].International Journal of Cardiovascular Disease,2020,01:44-47.
点击复制

猪主动脉瓣内皮细胞的分离与鉴定(PDF)

《国际心血管病杂志》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2020年01期
页码:
44-47
栏目:
基础研究
出版日期:
2020-01-14

文章信息/Info

Title:
Isolation and identification of endothelial cells from porcine aortic valve
作者:
张煜 李宁 白一帆 刘晓红 龚德军 徐志云
200433上海,海军军医大学长海医院心胸外科
Author(s):
ZHANG Yu LI Ning BAI Yifan LIU Xiaohong GONG Dejun XU Zhiyun
Department of Cardiac Surgery, Changhai Hospital, Naval Military Medical University, Shanghai200433, China
关键词:
主动脉瓣内皮细胞 细胞培养 细胞表型鉴定
Keywords:
Aortic valve endothelial cells Cell culture Cell phenotype identification
分类号:
-
DOI:
10.3969/j.issn.1673-6583.2020.01.011
文献标识码:
-
摘要:
目的:探讨胶原酶消化法分离猪主动脉瓣内皮细胞的可靠性及可重复性。方法:通过胶原酶消化法从新鲜猪主动脉瓣膜表面分离并培养主动脉瓣内皮细胞,通过免疫荧光染色法和流式细胞仪对获得的瓣膜内皮细胞(VEC)的表型加以鉴定。结果:通过胶原酶消化法可成功分离VEC,光镜下VEC呈铺路石样分布,为典型的内皮细胞形态。免疫荧光染色示VEC的CD31表达为阳性,波形蛋白(Vimentin)、α-平滑肌肌动蛋白(α-SMA)表达为阴性,分离获得的细胞中VEC阳性率高,间质细胞污染率较低; 流式细胞仪示分离获得的细胞Vimentin表达阴性(3.06%),CD31表达阳性(99.01%),再次验证分离获得的VEC纯度高。结论:胶原酶消化法可从猪主动脉瓣膜分离获得纯度较高的VEC,该方法简单,可重复性好。
Abstract:
Objective:To investigate the reliability and reproducibility of isolating endothelial cells from porcine aortic valve by collagenase digestion.Methods:The aortic valve endothelial cells(VECs)were isolated and cultured from fresh porcine aortic valve surface by collagenase digestion. Immunofluorescence staining and flow cytometry were used to identify the phenotype of VECs.Results:The cells isolated presented typical morphology of endothelial cells,arranging as paving stones under light microscopy. VEC could be successfully isolated by collagenase digestion. Immunofluorescence staining showed that CD31 was positive, while Vimentin and α-SMA were negative in VECs, indicating that positive rate of VECs in cells isolated was high and contamination rate by interstitial cells was low. It was verified by flow cytometry, which showed that Vimentin positive rate was 3.06% and CD31 positive rate was 99.01% in cells isolated.Conclusions:Collagenase digestion can be used to isolate aortic high-pure VECs from porcine aortic valve. This method is simple and reproducible.

参考文献/References

[ 1 ]Hulin A, Hego A, Lancellotti P, et al. Advances in pathophysiology of calcific aortic valve disease propose novel molecular therapeutic targets[J]. Front Cardiovas Med, 2018, 5(21):21.
[ 2 ]贺钰斌, 朱丹.钙化性主动脉瓣疾病发病机制的研究进展[J].中国胸心血管外科临床杂志, 2018, 25(2):1-6.
[ 3 ]Towler DA. Molecular and cellular aspects of calcific aortic valve disease[J]. Circ Res, 2013, 113(2):198-208.
[ 4 ]高佳斌, 徐志云.主动脉瓣钙化发病机制的研究进展[J]. 国际心血管病杂志, 2016, 43(4):210-212.
[ 5 ]Gould ST, Srigunapalan S, Simmons CA, et al. Hemodynamic and cellular response feedback in calcific aortic valve disease[J]. Circ Res, 2013, 113(2):186-197.
[ 6 ]Kostyunin AE, Yuzhalin AE, Ovcharenko EA, et al. Development of calcific aortic valve disease: do we know enough for new clinical trials?[J]. J Mol Cell Cardiol, 2019, 132:189-209.
[ 7 ]Rattazzi M, Pauletto P. Valvular endothelial cells: guardians or destroyers of aortic valve integrity?[J]. Atherosclerosis, 2015, 242(2):396-398.
[ 8 ]Dahal S, Huang P, Murray BT, et al. Endothelial to mesenchymal transformation is induced by altered extracellular matrix in aortic valve endothelial cells[J]. J Biomed Mater Res A, 2017, 105(10):2729-2741.
[ 9 ]Bosse K, Hans CP, Zhao N, et al. Endothelial nitric oxide signaling regulates Notch1 in aortic valve disease[J]. J Mol Cell Cardiol, 2013, 60:27-35.
[10]Huk DJ, Austin BF, Horne TE, et al. Valve endothelial cell-derived Tgfβ1 signaling promotes nuclear localization of Sox9 in interstitial cells associated with attenuated calcification[J]. Arterioscler Thromb Vasc Biol, 2016, 36(2):328-338.
[11]Katwa LC, Ratajska A, Cleutjens JP, et al. Angiotensin converting enzyme and kininase-Ⅱ-like activities in cultured valvular interstitial cells of the rat heart[J]. Cardiovasc Res, 1995, 29(1):57-64.
[12]Tao G, Kotick JD, Lincoln J. Heart valve development, maintenance, and disease: the role of endothelial cells[J]. Curr Top Dev Biol, 2012, 100:203-232.
[13]Gould ST, Srigunapalan S, Simmons CA, et al. Hemodynamic and cellular response feedback in calcific aortic valve disease[J]. Circ Res, 2013, 113(2):186-197.
[14]Sucosky P, Balachandran K, Elhammali A, et al. Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-beta1-dependent pathway[J]. Arterioscler Thromb Vasc Biol, 2009, 29(2):254-260.
[15]Paruchuri S, Yang JH, Aikawa E, et al. Human pulmonary valve progenitor cells exhibit endothelial/mesenchymal plasticity in response to vascular endothelial growth factor-A and transforming growth factor-beta2[J]. Circ Res, 2006, 99(8):861-869.
[16]Dal-Bianco JP, Aikawa E, Bischoff J, et al. Active adaptation of the tethered mitral valve insights into a compensatory mechanism for functional mitral regurgitation[J]. Circulation, 2009, 120(4):334.
[17]Kennedy JA, Hua X, Mishra K, et al. Inhibition of calcifying nodule formation in cultured porcine aortic valve cells by nitric oxide donors[J]. Eur J Pharmacol, 2009, 602(1):28-35.
[18]Yip CY, Blaser MC, Mirzaei Z, et al. Inhibition of pathological differentiation of valvular interstitial cells by C-type natriuretic peptide[J]. Arterioscler Thromb Vasc Biol, 2011, 31(8):1881-1889.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(81570351)
作者单位:200433上海,海军军医大学长海医院心胸外科
通信作者:徐志云,E-mail:zhiyunx@hotmail.com
更新日期/Last Update: 2020-01-15