索引超出了数组界限。
[1] Bai Y, Wang YL, Shantsila A, et al. The global burden of atrial fibrillation and stroke: a systematic review of the clinical epidemiology of atrial fibrillation in Asia[J]. Chest, 2017, 152(4):810-820.
[2] Cochet H, Scherr D, Zellerhoff S, et al. Atrial structure and function 5 years after successful ablation for persistent atrial fibrillation: an MRI study[J]. J Cardiovasc Electrophysiol, 2014, 25(7):671-679.
[3] Banerjee I, Fuseler JW, Price RL, et al. Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse[J]. Am J Physiol Heart Circ Physiol, 2007, 293(3):H1883-H1891.
[4] Burstein B, Libby E, Calderone A, et al. Differential behaviors of atrial versus ventricular fibroblasts: a potential role for platelet-derived growth factor in atrial-ventricular remodeling differences[J]. Circulation, 2008, 117(13):1630-1641.
[5] Moore-Morris T, Guimar?es-Camboa N, Banerjee I, et al. Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis[J]. J Clin Invest, 2014, 124(7):2921-2934.
[6] Miragoli M, Salvarani N, Rohr S. Myofibroblasts induce ectopic activity in cardiac tissue[J]. Circ Res, 2007, 101(8):755-758.
[7] Weber KT, Sun Y, Bhattacharya SK, et al. Myofibroblast-mediated mechanisms of pathological remodelling of the heart[J]. Nat Rev Cardiol, 2013, 10(1):15-26.
[8] Kawamura M, Ito H, Onuki T, et al. Candesartan decreases type Ⅲ procollagen-N-peptide levels and inflammatory marker levels and maintains sinus rhythm in patients with atrial fibrillation[J]. J Cardiovasc Pharmacol, 2010, 55(5):511-517.
[9] Hunyady L, Catt KJ. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin Ⅱ[J]. Mol Endocrinol, 2006, 20(5):953-970.
[10] Tadevosyan A, Xiao J, Surinkaew S, et al. Intracellular angiotensin-Ⅱ interacts with nuclear angiotensin receptors in cardiac fibroblasts and regulates RNA synthesis, cell proliferation, and collagen secretion[J]. J Am Heart Assoc, 2017, 6(4): e004965.
[11] Goette A, Lendeckel U. Expression of angiotensin Ⅱ receptors in human left and right atrial tissue in atrial fibrillation with and without underlying mitral valve disease[J]. J Am Coll Cardiol, 2003, 42(10):1785-1792.
[12] Xiao HD, Fuchs S, Campbell DJ, et al. Mice with cardiac-restricted angiotensin-converting enzyme(ACE)have atrial enlargement, cardiac arrhythmia, and sudden death[J]. Am J Pathol, 2004, 165(3):1019-1032.
[13] Lavall D, Selzer C, Schuster P, et al. The mineralocorticoid receptor promotes fibrotic remodeling in atrial fibrillation[J]. J Biol Chem, 2014, 289(10):6656-6668.
[14] Swedberg K, Zannad F, Mcmurray JJ, et al. Eplerenone and atrial fibrillation in mild systolic heart failure: results from the EMPHASIS-HF(Eplerenone in Mild Patients Hospitalization And SurvIval Study in Heart Failure)study[J]. J Am CollCardiol, 2012, 59(18):1598-1603.
[15] Xiaoqing, Chen, Wuchang, et al. Eplerenone inhibits atrial fibrosis in mutant TGF-β1 transgenic mice[J]. Sci China Life Sci, 2016, 59(10):1042-1047.
[16] Verheule S, Sato T, Everett T, et al. Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-beta1[J]. Circ Res, 2004, 94(11):1458-1465.
[17] Rahmutula D, Marcus GM, Wilson EE, et al. Molecular basis of selective atrial fibrosis due to overexpression of transforming growth factor-β1[J]. Cardiovasc Res, 2013, 99(4):769-779.
[18] Kunamalla A, Ng J, Parini V, et al. Constitutive expression of a dominant-negative TGF-β type Ⅱ receptor in the posterior left atrium leads to beneficial remodeling of atrial fibrillation substrate[J]. Circ Res, 2016, 119(1):69-82.
[19] Klinkhammer BM, Floege J, Boor P. PDGF in organ fibrosis[J]. Mol Aspects Med, 2017, 22(17): 30127-30129.
[20] Moore-Morris T, Cattaneo P, Puceat M, et al. Origins of cardiac fibroblasts[J]. J Mol Cell Cardiol, 2016, 91:1-5.
[21] Van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure[J]. Proc Natl Acad Sci U S A, 2006, 103(48):18255-18260.
[22] Chen C, Ponnusamy M, Liu C, et al. MicroRNA as a therapeutic target in cardiac remodeling[J]. Biomed Res Int, 2017:1278436.
[23] Mcmanus DD, Lin H, Tanriverdi K, et al. Relations between circulating microRNAs and atrial fibrillation: data from the Framingham Offspring Study[J]. Heart Rhythm, 2014, 11(4):663-669.
[24] Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts[J]. Nature, 2008, 456(7224):980-984.
[25] Liu H, Qin H, Chen GX, et al. Comparative expression profiles of microRNA in left and right atrial appendages from patients with rheumatic mitral valve disease exhibiting sinus rhythm or atrial fibrillation[J]. J Transl Med, 2014,12: 90.
[26] Van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis[J]. Proc Natl Acad Sci U S A, 2008, 105(35):13027-13032.
[27] Qiao G, Xia D, Cheng Z, et al. miR-132 in atrial fibrillation directly targets connective tissue growth factor[J]. Mol Med Rep, 2017, 16(4):4143-4150.
[28] Huang Y, Li J. MicroRNA208 family in cardiovascular diseases: therapeutic implication and potential biomarker[J]. J Physiol Biochem, 2015, 71(3):479-486.
[29] Huang Y, Qi Y, Du JQ, et al. MicroRNA-34a regulates cardiac fibrosis after myocardial infarction by targeting Smad4[J]. Expert Opin Ther Targets, 2014, 18(12):1355-1365.
[30] Mcvicker BL, Bennett RG. Novel anti-fibrotic therapies[J]. Front Pharmacol, 2017, 8:318.