索引超出了数组界限。
[1] Angelova PR, Abramov AY. Functional role of mitochondrial reactive oxygen species in physiology[J]. Free Radic Biol Med, 2016, 100(11):81-85.
[2] Bartz RR, Suliman HB, Piantadosi CA. Redox mechanisms of cardiomyocyte mitochondrial protection[J]. Front Physiol, 2015, 6(10):291-298.
[3] Chen YR, Zweier JL. Cardiac mitochondria and reactive oxygen species generation[J]. Circ Res, 2014, 114(3):524-537.
[4] Korge P, John SA, Calmettes G, et al. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex Ⅱ[J]. J Biol Chem, 2017, 292(24):9896-9905.
[5] Srinivasan S, Spear J, Chandran K, et al. Oxidative stress induced mitochondrial protein kinase A mediates cytochrome C oxidase dysfunction[J]. PLoS One, 2013, 8(10):e77129-e77144.
[6] Duicu OM, Lighezan R, Sturza A, et al. Assessment of mitochondrial dysfunction and monoamine oxidase contribution to oxidative stress in human diabetic hearts[J]. Oxid Med Cell Longev, 2016, 2016:8470394.
[7] Inagaki T, Akiyama T, Du CK, et al. Monoamine oxidase-induced hydroxyl radical production and cardiomyocyte injury during myocardial ischemia-reperfusion in rats[J]. Free Radic Res, 2016, 50(6):645-653.
[8] Faria A, Persaud SJ. Cardiac oxidative stress in diabetes: Mechanisms and therapeutic potential[J]. Pharmacol Ther, 2016, 172(12):50-62.
[9] Hernández-Reséndiz S, Chinda K, Ong S-B, et al. The role of redox dysregulation in the inflammatory response to acute myocardial ischaemia-reperfusion injury - adding fuel to the fire[J]. Curr Med Chem, 2017,24(42): 28356034-28356044.
[10] Yao X, Carlson D, Sun Y, et al. Mitochondrial ROS induces cardiac inflammation via a pathway through mtDNA damage in a pneumonia-related sepsis model[J]. PLoS One, 2015, 10(10):e0139416-e0139444.
[11] Murphy MP. Understanding and preventing mitochondrial oxidative damage[J]. Biochem Soc Trans, 2016, 44(5): 1219-1226.
[12] Kalogeris T, Bao Y, Korthuis RJ. Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning[J]. Redox Biol, 2014, 2(1):702-714.
[13] Cohen MV, Downey JM. Signalling pathways and mechanisms of protection in pre- and postconditioning: historical perspective and lessons for the future[J]. Br J Pharmacol, 2015, 172(8):1913-1932.
[14] Galagudza MM, Sonin DL, Vlasov TD, et al. Remote vs. local ischaemic preconditioning in the rat heart: infarct limitation, suppression of ischaemic arrhythmia and the role of reactive oxygen species[J]. Int J Exp Pathol, 2016, 97(1):66-74.
[15] Andrienko T, Pasdois P, Rossbach A, et al. Real-time fluorescence measurements of ROS and [Ca2+] in ischemic/reperfused rat hearts:detectable increases occur only after mitochon--drial pore opening and are attenuated by ischemic preconditioning[J]. PLoS One, 2016, 11(12): 27907091-27907122.
[16] Dǎnilǎ MD, Privistirescu AI, Mirica SN, et al. Acute inhibition of monoamine oxidase and ischemic preconditioning in isolated rat hearts: interference with postischemic functional recovery but no effect on infarct size reduction[J]. Can J Physiol Pharmacol, 2015, 93(9):819-825.
[17] Madungwe NB, Zilberstein NF, Feng Y, et al. Critical role of mitochondrial ROS is dependent on their site of production on the electron transport chain in ischemic heart[J]. Am J Cardiovasc Dis, 2016, 6(3):93-108.
[18] Lonborg JT. Targeting reperfusion injury in the era of primary percutaneous coronary intervention: hope or hype?[J]. Heart, 2015, 101(20):1612-1618.