索引超出了数组界限。
[1] Hogg K, Swedberg K, Mcmurray J. Heart failure with preserved left ventricular systolic function; epidemiology, clinical characteristics, and prognosis[J]. J Am Coll Cardiol, 2004, 43(3):317-327.
[2] Burkhoff D. Mortality in heart failure with preserved ejection fraction: an unacceptably high rate[J]. Eur Heart J, 2012, 33(14):1718-1720.
[3] Borlaug BA, Kass DA. Ventricular-vascular interaction in heart failure[J]. Cardiol Clin, 2011, 29(3):447-459.
[4] Mohammed SF, Hussain S, Mirzoyev SA, et al. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction[J]. Circulation, 2015, 131(6):550-559.
[5] Wang JW, Khoury DS, Yue Y, et al. Preserved left ventricular twist and circumferential deformation, but depressed longitudinal and radial deformation in patients with diastolic heart failure[J]. Eur Heart J, 2008, 29(10):1283-1289.
[6] Omar AM, Bansal M, Sengupta PP. Advances in echocardiographic imaging in heart failure with reduced and preserved ejection fraction[J]. Circ Res, 2016, 119(2):357-374.
[7] Watson CJ, Gupta SK, O’connell E, et al. MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure[J]. Eur J Heart Fail, 2015, 17(4):405-415.
[8] Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure[J]. Kardiol Pol, 2016, 74(10):1037-1147.
[9] Anjan VY, Loftus TM, Burke MA, et al. Prevalence, clinical phenotype, and outcomes associated with normal B-type natriuretic peptide levels in heart failure with preserved ejection fraction[J]. Am J Cardiol, 2012, 110(6):870-876.
[10] Anand IS, Rector TS, Cleland JG, et al. Prognostic value of baseline plasma amino-terminal pro-brain natriuretic peptide and its interactions with irbesartan treatment effects in patients with heart failure and preserved ejection fraction findings from the I-PRESERVE trial[J]. Circ Heart Fail, 2011, 4(5):569-577.
[11] Meijers WC, Hoekstra T, Jaarsma T, et al. Patients with heart failure with preserved ejection fraction and low levels of natriuretic peptides[J]. Neth Heart J, 2016, 24(4):287-295.
[12] Mair J, Lindahl B, Giannitsis E, et al. Will sacubitril-valsartan diminish the clinical utility of B-type natriuretic peptide testing in acute cardiac care?[J]. Eur Heart J Acute Cardiovasc Care, 2017, 6(4):321-328.
[13] Mason JM, Hancock HC, Close H, et al. Utility of biomarkers in the differential diagnosis of heart failure in older people: findings from the heart failure in care homes(HFinCH)diagnostic accuracy study[J]. PLoS One, 2013, 8(1):e53560.
[14] Hage C, Lund LH, Donal E, et al. Copeptin in patients with heart failure and preserved ejection fraction: a report from the prospective KaRen-study[J]. Open Heart, 2015, 2(1):e000260.
[15] Lala RI, Darabantiu D, Pilat L, et al. Galectin-3: a link between myocardial and arterial stiffening in patients with acute decompensated heart failure?[J]. Arq Bras Cardiol, 2016, 106(2):121-129.
[16] Polat V, Bozcali E, Uygun T, et al. Diagnostic significance of serum galectin-3 levels in heart failure with preserved ejection fraction[J]. Acta Cardiol, 2016, 71(2):191-197.
[17] Beltrami M, Ruocco G, Dastidar AG, et al. Additional value of Galectin-3 to BNP in acute heart failure patients with preserved ejection fraction[J]. Clin Chim Acta, 2016, 457:99-105.
[18] 罗年桑,张海峰,刘品明,等. 血清可溶性ST2联合白细胞介素-33对射血分数保留的心力衰竭辅助诊断价值的初探[J]. 中华心血管病杂志, 2017, 45(3):198-203.
[19] Matsubara J, Sugiyama S, Nozaki T, et al. Pentraxin 3 is a new inflammatory marker correlated with left ventricular diastolic dysfunction and heart failure with normal ejection fraction[J]. Am Coll Cardiol, 2011, 57(7):861-869.
[20] Matsubara J, Sugiyama S, Nozaki T, et al. Incremental prognostic significance of the elevated levels of pentraxin 3 in patients with heart failure with normal left ventricular ejection fraction[J]. J Am Heart Assoc, 2014, 3(4):e000928.
[21] Stahrenberg R, Edelmann F, Mende M, et al. The novel biomarker growth differentiation factor 15 in heart failure with normal ejection fraction[J]. Eur J Heart Fail, 2010, 12(12):1309-1316.
[22] Izumiya Y, Hanatani S, Kimura Y, et al. Growth differentiation factor-15 is a useful prognostic marker in patients with heart failure with preserved ejection fraction[J]. Can J Cardiol, 2014, 30(3):338-344.
[23] Tanajak P, Chattipakorn SC. Chattipakorn N. Effects of fibroblast growth factor 21 on the heart[J]. J Endocrinol, 2015, 227(2):R13-R30.
[24] Chou RH, Huang PH, Hsu CY, et al. Circulating fibroblast growth factor 21 is associated with diastolic dysfunction in heart failure patients with preserved ejection fraction[J]. Sci Rep, 2016, 6:33953.
[25] Barroso MC, Kramer F, Greene SJ, et al. Serum insulin-like growth factor-1 and its binding protein-7: potential novel biomarkers for heart failure with preserved ejection fraction[J]. BMC Cardiovasc Disord, 2016, 16(1):199.
[26] Tanaka K, Valero-Mu?oz M, Wilson RM, et al. Follistatin like 1 regulates hypertrophy in heart failure with preserved ejection fraction [J]. JACC Basic Transl Sci, 2016, 1(4):207-221.
[27] Yamamoto E, Hirata Y, Tokitsu T, et al. The clinical significance of plasma neopterin in heart failure with preserved left ventricular ejection fraction[J]. ESC Heart Fail, 2016, 3(1):53-59.
[28] Kleber ME, Koller L, Goliasch G, et al. Von Willebrand factor improves risk prediction in addition to N-terminal pro-B-type natriuretic peptide in patients referred to coronary angiography and signs and symptoms of heart failure and preserved ejection fraction[J]. Circ Heart Fail, 2015, 8(1):25-32.